Math 110 - Mandatory Hand-In Homework to be Collected and Graded

Lect.#	Section #, Problems and Special Projects
1	Section P.1: 117,129,137
	Section P.2: 41,79,85
	Section P.6: 31,57,67,99,104 Section P.3: 23,49,65
	Section P.4: 25,55,63,79,85,91,93
	Service D 5: 10 20 71 90
2	Section P.5: 19,29,71,89 Section 1.1: 41,56,65,79
	Section 1.2: 21,27,39,47,81,87
	Section 1.4: 11,17,45,57,77
3	Section 4.1: 24,26,37,56,61,65,69,74,85,86
4	Section 4.2: 40,50,56,76,86,94,96,99,103
5	Section 4.3: 15,17,32,44,70,72,85
6	Section 4.4: 22,24,32,41,42,60,70
7	Section 5.1: 30,34,56,58,62,72,76,77,82
	Application Problems
	1. A wheel with a 10" diameter rolls 6 ft to the left. Find the angle it turns through in degrees.
	2.An automobile with wheels of radius 15 inches is pushed so that the wheels turn three-quarters of a
	revolution to the left. How far does the car move?
	3. Find the area of a sector of a circle given a central angle of 110° and a radius of 3 cm.
8	Application: Pulley System Project
	Lecture/HW packet given in class: Prob. 1-7 odd
9	Section 5.2: 10,14,26,32,40,44,50,84,85
10	Application Problems
	1. Suppose that $\sin \theta = \frac{K}{4}$ where 'K' is a nonzero constant. Find the values of the other 5
	trigonometric functions in terms of 'K'.
	2. Suppose $\sin(\theta) = \frac{a}{b}$ (where a and b are nonzero constants). Find the following in terms of 'a'
	and 'b': a = b (where a and b are nonzero constants). This are following in terms of a
	a) $\csc(\theta)$ b) $\cos^2(\theta) - 1$ c) $\tan^2(\theta)$ d) $\sin(\theta + 4\pi)$
	3. Find the exact values of x and y in the triangle below:
	5. Find the exact values of x and y in the trangle below.
	10
	30° y
	x
11	Section 5.3: 16,19,34,39,43,45,57
12	Section 5.3: 65,77,88
13	Section 5.4: 20,21,38,52,56,69,70,87,91
	Application Problems Sketch one period of the following function. Label the 5 key points.
	$y = -2\cos\left(\frac{\pi}{2}x + \frac{\pi}{4}\right) + 1$

14	Section 5.5: 10,30,35,37
15	Section 5.6: 12,20,22,30,34,36,48
	Application Problems
	1. Evaluate $\sin\left[\cos^{-1}\left(\frac{1}{x}\right)\right]$ in terms of x. (Hint: draw a right triangle and label the sides accordingly)
	2. Find the exact value of the inverse trig. expression, or state that it is undefined. $\tan \left[\cos^{-1} \left(\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right) \right]$
16	Application Problems Simplify the algebraic expression below by using the given trigonometric substitution. Assume that $0 < \theta < \frac{\pi}{2}$.
	a) $y = \frac{\sqrt{16 - x^2}}{\sin x}$, $x = 4 \sin \theta$ b) $y = \frac{x}{\sqrt{x^2 - 25}}$, $x = 5 \sec \theta$ c) $y = \frac{x}{\sqrt{4 + x^2}}$, $x = 2 \tan \theta$
17	Section.6.1: 14,32,38,40,60,64,72,80,100
	Application Problems Simplify the algebraic expression below by using the given trigonometric substitution. Assume that $0 < \theta < \frac{\pi}{2}$.
	a) $y = \sqrt{1 + x^2}$, $x = \tan \theta$ b) $y = \sqrt{x^2 - 1}$, $x = \sec \theta$ c) $y = \frac{x}{\sqrt{4 + x^2}}$, $x = 2 \tan \theta$
18	Section.6.2: 22,28,42,68
	Application ProblemsIf $\cos(\alpha) = -\frac{2}{5}$, with α in Quad. II, and $\sin(\beta) = -\frac{3}{7}$, with β in Quad. IV, find:a) $\sin(\alpha - \beta)$ b) $\cos(\alpha - \beta)$ c) $\tan(\alpha - \beta)$ d) angle $(\alpha - \beta)$ lies in what quadrant?
19	Application : Rolling Wheel Project Lecture/HW packet given in class. Probs. 1-7 odd
20	Section 6.3: 16,25,26,33,35,41,44,48
	Application Problems
	1. Given $\sin \theta = -\frac{3}{5}$, θ in Quad. III, find:
	a) $sin(2\theta)$ b) $cos(2\theta)$ c) $tan(2\theta)$ d) angle 2θ lies in what quadrant?
	e) $\sin\left(\frac{\theta}{2}\right)$ f) $\cos\left(\frac{\theta}{2}\right)$ g) $\tan\left(\frac{\theta}{2}\right)$ h) angle $\frac{\theta}{2}$ lies in what quadrant?
	2. Use the double angle identities to find a triple angle identity for cos 3x in terms of cos x only.
21	
22	Section 6.5: 14,40,48,62,68
23	Section 6.6: 10,14,22,66,71
24	Section 7.1:10,14,61,69
	Application ProblemsFind the exact value(s) indicated for the triangle ABC given the following:a) $B = 45^\circ$, $C = 30^\circ$, $b = 6$, find A and cb) $A = 135^\circ$, $a = 4$, $b = 2\sqrt{2}$, find B
	c) A = 120°, C = 30°, a = 10, find B and c d) a = $\sqrt{3}$, c = $\sqrt{6}$, A = 30°, find C, B and b.

25	Section 7.2: 10,12,18,38,42
	Application Problems Find the exact value(s) indicated for the triangle ABC given the following:
	a) $C = 60^{\circ}$, $a = 6$, $b = 8$, find c.
	b) $a = \sqrt{13}$, $b = 2, c = \sqrt{3}$, find A.
26	c) $A = 45^{\circ}$, $a = 12$, $c = 6\sqrt{2}$, find b. Section 7.3: 6,8,36,44
20	
	Application Problems Find the area of the triangle ABC given the following:
	a) $A = 60^{\circ}$, $b = 4$, $c = 7$.
	b) $B = 135^{\circ}$, $a = 2\sqrt{2}$, $c = 6$.
	c) $a = 8$, $b = 10$, $c = 6$.
	d) $a = 12$, $b = 13$, $c = 5$.
	e) In terms of 'k', find the area of a triangle with side lengths of 6, $k - 2$ and $k + 2$. Then find
	the range of values of k for which such a triangle can exist.
27	Application Problems
27	a) Sketch the triangle OAB determined by the origin (pole) and the points whose polar coordinates
	are $A(2\sqrt{2}, 10^{\circ})$ and $B(8, 145^{\circ})$.
	b) Determine the length of side AB using the Law of Cosines.
	c) Use Heron's formula to find the area of the triangle OAB.
	d) Check the result of part c) above geometrically by rotating the triangle so that side <i>OA</i> coincides with
	the positive x-axis and using the formula of a right triangle:
	$Area = \frac{1}{2}(base)(height).$
28	Section 2.2: 72,76,78,80,82
29	Section 10.3: 14,20,28,36,46,52
30	Section 7.6:10,30,38,39,43,46,47,52
31	Section 7.6: 64,66,68,70
32	Section 8.1: 60,64,74,76
	Application Problems 1. A line passing through the center of a circle intersects its diameter diagonally with the endpoints:
	P(0,2) and $Q(6,8)$.
	a) Find the equation of this line in the $y = mx + b$ form.
	b) Find the equation of the circle in Standard Form.
	c) Graph the circle and the line on the same set of axes.
	2. In terms of a, b and c, solve the following system of equations. Express x and y as single fractions.
	$\begin{cases} x + by = 2 \\ ax - cy = 0 \end{cases}$
1	(ax - cy - 0)

33	Section 8.2: 20,24
	Application Problem
	In terms of 'a', solve the following system of equations: $\begin{cases} x + y = 3a \\ y + z = 3a + 2 \\ 2x - y + z = a + 2 \end{cases}$
34	
35	Section 8.3: 18,20,26,40
36	Section 8.3: 60,70,71
37	Section 8.4: 18,32,44,48,60,66,70 Application Problems a) Find the intersection point(s) between the following curves using any method: $\begin{cases} x^2 + y^2 = 25 \\ x^2 - y = 5 \end{cases}$ b) Then graph the 2 curves on the same set of axes and confirm the point(s) of intersection.
38	Section 9.1: 10,14,30,32,56,66,72
39	Section 9.2: 10,18,22,30,32
40	
41	

Prepared By: Prof. Jimmy Hayes

Last revised: August 15, 2018

<u>top</u>