CALCULUS 211-FINAL EXAM-DECEMBER 15, 2004

1) Determine the equation of the plane formed by the intersecting lines
\[\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{4} = t \text{ and } \frac{1-x}{1} = \frac{2-y}{2} = \frac{z+1}{2} = t \]

2) Evaluate \(\frac{\partial z}{\partial x} \) at the point (2,2,1) for the surface \(x\ln z + xyz^2 + zy = 5 \)

3) Determine, for \(w = x^2y^3 \sin z + x \) at the point (2, 1, \(\frac{\pi}{6} \))
 a) Maximum value of the directional derivative \(\frac{dw}{ds} \)
 b) The equation of the plane tangent to the surface \(x^2y^3 \sin z + x = 4 \) at the same point

4) For a point moving along the space curve \(x = t^2 + 1 \), \(y = \cos t \), \(z = e^{2t} \)
 determine the cosine of the angle between the position and acceleration vectors, at t=0

5) Find the critical points and classify them for \(z = x^4 - 8x^2 + y^2 - 4y \)

6) Using Lagrange multipliers, find the point on the line \(y = -2x + 4 \) that is closest to point (0,1)
 (hint: minimize the square of the distance between the points)

7) Evaluate the double integral \(\int_0^1 \int_0^1 \left(\frac{1}{\sqrt{1+4y^3}} \right) dy \) by reversing the order of integration

8) Evaluate the volume in the region bounded by the parabolic cylinder \(y = x^2 \) and the planes
 \(y + z = 1 \) and \(z = 0 \), by evaluating the volume integral \(\iiint dV \)

9a) Determine the potential of the conservative vector field \(\mathbf{F} = xz^2 \mathbf{i} + 2yz \mathbf{j} + x^2z \mathbf{k} \)
 b) Evaluate the work done by this vector field in moving along an object from
 the point (0,0,1) to (1,2,1)

10) For the space curve \(x = t^2 + 1 \), \(y = \frac{t^4}{4} \), \(z = t^3 - 1 \)
 evaluate the line integral \(\int_c \mathbf{F} \cdot d\mathbf{R} \) for \(\mathbf{F} = 5y \mathbf{i} + 7z \mathbf{j} + x \mathbf{k} \) between \(0 \leq t \leq 1 \)

11) For the vector field \(\mathbf{F} = -yi + xyj \) evaluate as a line integral \(\oint \mathbf{F} \cdot d\mathbf{R} = \oint -y dx + xy dy \)
 around the region enclosed by the curves \(y = 4x \) and \(y = x^3 \) in the first octant.

12) Using Greens Theorem evaluate the integral \(\oint \mathbf{F} \cdot d\mathbf{R} \) in problem (11)
 by double integration.