Capstone (Math 451H) Spring 2007:

Instability of a Fluid Strip


     Department of Mathematical Sciences 

Instability of a fluid strip

Jamila Hedhli
Joe Brachocki
Sanjay Muddam
Daniel Fong

Assistant: Nebo Murisic
Instructor: Lou Kondic

Department of Mathematical Sciences, New Jersey Institute of Technology

Waves on the surface of a thin liquid film have intrigued researchers for several years. Numerous experimental and modeling studies have been reported.
Due to the presence of the free surface, governing non-linear Navier-Stokes
(N-S) equations are considerably difficult to analyze. Thus effort was made to describe these surface waves using low-dimensional models derived from the N-S equations. Our project is composed of three parts. Experimentally we use a goniometer to record the profile of a strip flowing down an inclined and inverted surfaces, using two types of solids. Computationally, we solve the PDE for the fluid height for the two types of solids. Theoretically, we discuss the similarities and differences between the waves observed on falling films, and the ones present in the case of the flow down an inverted surface.

Powerpoint Presentation Link