Preclinical Cardiac Safety Assessment of Pharmaceutical Compounds Using an Integrated Systems-Based Computer Model of the Heart

Dean Bottino\(^{(1)}\), Christian Penland\(^{(2)}\), Andrew Stamps\(^{(3)}\), Martin Traebert\(^{(4)}\), Berengere Dumotier\(^{(4)}\), Anna Georgieva\(^{(1)}\), Gabriel Helmlinger\(^{(5)}\), G. Scott Lett\(^{(6)}\)

(1) Modeling and Simulation-Biology, Novartis Pharmaceuticals-US
dean.bottino@novartis.pharma.com

(2) Predix Pharmaceuticals

(3) Department of Computer Science, University of South Carolina

(4) Safety Profiling & Assessment, Novartis Pharma AG, Basel

(5) Modeling and Simulation-Biology, Novartis Institutes for Biomedical Research

(6) The BioAnalytics Group LLC

Preclinical Cardiac Safety Assessment of Pharmaceutical Compounds Using an Integrated Systems-Based Computer Model of the Heart

Dean Bottino¹, R. Christian Penland², Andrew Stamps³, Martin Traebert⁴, Bérengère Dumotier⁴, Anna Georgieva⁵, Gabriel Helmlinger⁶, G. Scott Lett¹

¹The BioAnalytics Group LLC, USA
²Predix Pharmaceuticals, USA
³Dept. of Chemical Engineering, University of South Carolina, USA
⁴Safety Profiling & Assessment, Novartis Pharma AG, Basel Switzerland
⁵Modeling & Simulation, Novartis Pharmaceuticals, East Hanover USA
⁶Modeling & Simulation, Novartis Institutes for Biomedical Research Inc., Cambridge USA

1 Abstract

Blockade of the delayed rectifier potassium channel current, I_{Kr}, has been associated with drug-induced QT prolongation in the ECG and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I_{Kr} (Redfern, Carlsson et al. 2003). Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear.

Limited preclinical data, I_{Kr} hERG assay and canine Purkinje fiber action potentials (Gintant, Limberis et al. 2001), were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology (Muzikant and Penland 2002) to (i) convert a canine myocyte model to a Purkinje fiber model by training functional current parameters to the action potential data; (ii) reverse-engineer the compounds’ effects on five channel currents other than I_{Kr}, predicting significant IC_{50} values for I_{Na},sustained and
I_{Ca^{2+},L-type}, which were subsequently experimentally validated; (iii) use the predicted (I_{Na^{+},sustained} and I_{Ca^{2+},L-type}) and measured (I_{Kr}) IC_{50} values to simulate dose-dependent effects of the compounds on action potentials in Endo-, M-, and Epi-cardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I_{Kr} \textit{in vitro}.

2 Introduction

2.1 Drug Induced Arrhythmia and Preclinical Safety Assessment

Drug-induced QT prolongation and the accompanying proarrhythmic risk are major regulatory concerns in drug development, contributing to half of the safety-related withdrawals of drugs from the market since 1997 and impacting all therapeutic drug classes (Redfern, Carlsson et al. 2003). The QT interval of the electrocardiogram (ECG) marks the duration of time between ventricular depolarization and repolarization. Drugs which delay ventricular repolarization and prolong the QT interval are associated with an increased risk of life-threatening ventricular tachyarrhythmia, in particular Torsades de Pointes (TdP).

Cardiac repolarization is a complex physiological process terminating the cardiac action potential, and it results from the activities of multiple membrane ion channels and transporters. These ion channels and transporters interact through membrane potential and intra-/extracellular ionic concentrations, but are also affected by systemic factors including hormone regulation, metabolic state, and autonomic nervous tone. It is therefore no surprise that a variety of mechanisms could contribute to abnormal repolarization in the heart.

Prolongation of the action potential can result from increases in inward currents (Na^{+} or Ca^{2+}) or from inhibition of one or more of the outward K^{+} currents. Most drugs initially discovered to prolong the QT interval are class III antiarrhythmics that block K^{+} currents.
It is now widely accepted that the blockade of I_{Kr} current by these drugs is at least in part responsible for their proarrhythmic effect; however, this risk may be modulated by blocking other channels (Curtis, Ostbye et al. 2003). Despite the documented risk and increasing regulatory awareness, 23 percent of U.S. adult outpatients are prescribed at least one drug known to have proarrhythmic risk, i.e., having an official warning for QT prolongation or TdP, or with published data on QT prolongation, ventricular tachycardia, or class III effect (FDA 2003; FDA 2004). Accurately assessing the proarrhythmic potential of drug candidates should be done early in preclinical development to avoid the economic and public health consequences of late stage failures of drug candidates, unfavorable labeling, and withdrawals of FDA-approved products.

Although a variety of in vitro and in vivo experimental models are available for assessing the QT prolongation and proarrhythmic potential of a drug candidate, no single preclinical model has been proven to be a predictive surrogate for the human heart, i.e. clinical exposure (Hammond 2001). Recognizing this need, pharmaceutical regulatory agencies worldwide together with industry and academic scientists have developed guidance urging the integration of several assays in hopes that their combination will provide a superior measure of true proarrhythmic risk (S7B-FDA 2004). In a realistic development environment, the earliest indications of proarrhythmic risk are commonly predicted using assays for I_{Kr} inhibition and an action potential assay. This paper presents a novel computational system that uses only these two assay results to predict key electrophysiological markers used in the early cardiac safety assessment of compounds. These quantities of interest are: (i) drug effects on multiple cardiac ion channel currents; (ii) multiple features of compound effects on Purkinje and ventricular myocyte action potential, with quantitative spatial distinction for endocardial, mid-myocardial and epicardial cells across the ventricular wall; and (iii) changes in ECG accounting for multiple patient risk factors.

Using two candidate compounds in development, the computational system was tested as a tool to aid in the cardiac safety assessment. These two compounds showed significant I_{Kr} blockade, but lacked the dose-dependent prolongation of action potential commonly
associated with compounds that block I_{Kr}. The computational system was used, first to provide a mechanistic explanation of these two results, and second to predict the clinical implications of the ion-channel mechanisms of the compounds.

2.2 Review of Applicable Experimental methods

Ion Channels

Several potassium currents are involved in the process of cardiac repolarization (Tristani-Firouzi et al., 2001). In this finely tuned mechanism, the rapidly activating delayed rectifier current I_{Kr} has been demonstrated to play a major role (Sanguinetti et al., 1995a). The pore forming protein of the I_{Kr} current (the alpha subunit encoded by the human ether-a-go-go-related gene or hERG, see Sanguinetti et al., 1995b) is known to be a common target of compounds which are able to prolong the ventricular repolarization process in humans with the acquired Long QT Syndrome (LQTS), but also the site of several mutations responsible for the loss of function of this channel in human congenital LQTS (LQT2; Curran et al., 1992).

Recent data have shown that the coexpression of the hERG α-subunit with minK related protein (MiRP1) reconstitutes the native cardiac IKr (Abbott et al., 1997) and that the presence of this additional subunit can impact the pharmacological sensitivity to certain inhibitors. Still, other studies have demonstrated that the inhibitory effects of several potent IKr blockers on the hERG current were not altered by the presence of MiRP1 (Kamiya et al., 2001; Scherer et al., 2002; Weerapura et al., 2002). While important to the ongoing understanding of cardiac repolarization, these discrepancies have not proved sufficient to alter the prevalence of hERG inhibition studies (without MiRP1) in the pharmaceutical development industry. Therefore, data in this study are derived from heterologous cell lines expressing only the hERG α-subunit. When stably transfected in HEK293 cells, hERG offers the opportunity to directly check the ability of a New Compound Entity (NCE) to reduce the current generated by this pore forming protein and therefore, to indirectly estimate the potential risk associated with inadequate cardiac repolarization. This risk is quantified by the calculation of an IC_{50} value, i.e., the drug concentration that reduces the maximum hERG tail current by 50%. It is now generally
accepted that potent hERG blockers display IC$_{50}$ values of \leq 1 µM, while the weakest ones are associated with IC$_{50}$ values of $>$ 10 µM.

It has been shown that a large number of compounds known to induce Torsades de Pointes in humans have been shown to block hERG current with an IC$_{50}$ in the low micromolar range (Redfern et al., 2003). The hERG assay by itself is not sufficient to clearly predict the pro-arrhythmic potential of NCEs; however, the assay can be used as a profiling tool for early development drug candidates by generating the IC$_{50}$ value for each compound and then ranking the drugs according to these IC$_{50}$ values. Generally, the patch-clamp technique can also be used to quantify the interaction of NCE with other types of ion channels. For instance, assessing the drug effects on the fast inward sodium current or the L-type calcium current helps to better understand the effects of a drug at the cellular level.

Purkinje Fiber Assay

Measurements of transmembrane action potentials permit the prediction, characterization or understanding of the cellular ion mechanisms underlying proarrhythmic effects. Action Potential Duration (APD) recordings are performed in multicellular preparations and form the basis for the detection and quantification of APD prolongation and early afterdepolarizations (EAD) which are considered cellular-level events initiating arrhythmias (El-sherif et al., 1997; January and Shorofsky, 1990; Verduyn et al., 1997; Yan et al., 2001). EADs are cellular depolarizations, which may develop during the plateau (phase 2 of AP) or during the final repolarization (phase 3 of AP) of the action potential. EAD development is the consequence of an exaggerated APD prolongation that keeps the membrane potential at values allowing spontaneous generation of net inward currents (the Na$^+$ "window") or slowly inactivating currents such as the L-type Ca$^{2+}$ current, the T-type Ca$^{2+}$ current, the transient inward current (I$_{TI}$), or the Na$^+$–Ca$^{2+}$ exchange current (January and Riddle, 1989; January and Moscucci, 1992). Such spontaneous depolarizations may lead to premature action potentials or even bursts of potentials known as triggered activity (January et al., 1990).
AP recording can be used efficiently in detecting drug-induced APD prolongation and subsequent EADs, assuming several experimental conditions are met, such as physiological concentrations of different ions (Na\(^+\), Ca\(^{2+}\), K\(^+\)). Indeed, electrolyte imbalance is known to impair cardiac electrogensis and to favor arrhythmia \textit{in vivo}. Therefore, additional experimental protocols may use lower K\(^+\) ion concentration in order to promote EADs and, conversely, higher K\(^+\) ion concentration to suppress these particular events (Roden, 1993; Puisieux et al., 1996). In well-designed experimental protocols, preparations are challenged with different stimulation rates, especially low rates (< 1 Hz), which are known to favor the emergence of EADs, both \textit{in vitro} and \textit{in vivo} models (Davidenko 1989; El-Sherif et al., 1989; Dumotier et al., 1999).

Purkinje fibers are widely used for APD recordings because of their higher sensitivity to drug-induced APD prolongation and their higher propensity to develop EADs when compared with ventricular muscle (Lu et al., 2002). It is important to emphasize that, for some drugs involved in TdP cases in humans, there is a poor correlation between the hERG IC\(_{50}\) values and the results obtained in multicellular preparations used for APD recordings (Redfern et al., 2003; Martin et al., 2004). Despite having an IC\(_{50}\) in the hERG assay, which would suggest a risk for APD prolongation, some drugs in fact shorten APD or show a bell-shaped dose-response curve on APD (Adamantidis et al., 1993, 1995; Masumiya et al., 2004). The main reason for such discrepancy usually relates to a phenomenon of multiple ion channel block (lack of selectivity for a given channel target) displayed by such compounds (Delpont et al., 1999). Indeed, in more integrated experimental models involving multicellular preparations, the block of inward currents (mainly the fast inward current or the L-type calcium current) may counterbalance the hERG block within the same concentration range and result in APD shortening. Another reason may be different expression levels of several types of ion channels (cell-, tissue- and species-dependent), which usually lead to conflicting results between laboratories using different methods. For instance, the I\(_{Ks}\) component of the delayed rectifier current is expressed at lower levels in dog ventricular myocytes (Liu and Antzelevitch, 1995), rabbit ventricular myocytes (Salata et al., 1996), or human atrial tissue (Li et al., 1996), as compared to guinea pig ventricular myocytes (Sanguinetti and Jurkiewicz, 1991).
the latter species, the presence of a strong I_{Ks} current can mask the APD prolonging effects of I_{Kr} inhibition. Although the choice of the species is still a matter of debate, dogs and rabbits are generally considered to be the best candidates to assess the risk for humans (Dumotier et al., 1999; Gintant et al., 2001; Lu et al., 2002).

It is important to note that APD recordings from a multicellular preparation, such as the Purkinje fiber assay, do not integrate all mechanisms potentially involved in TdP at the whole heart level. Triggered activity may be induced in multicellular cardiac preparations, whereas re-entry phenomena cannot be modeled with Purkinje. In addition, stimulation rates used in models that favor EADs and triggered activity in isolated cardiac tissue are generally much lower than the physiologic range. Finally, bursts of sustained triggered activity observed in these preparations generally do not exceed 120 beats per minute, which is sensibly lower than the rate of TDP complexes observed in patients.

Dispersion of Repolarization

Despite the evidence that QT interval prolongation (Long QT Syndrome, LQTS) is one of the substrates for TdP, the fact that such arrhythmias may also appear in the absence of LQTS radically changed the scientific approach of detecting and considering the underlying mechanisms triggering TdP. Numerous studies demonstrated the role of the ventricular dispersion of repolarization and, more precisely, the role of transmural (Shimizu and Antzelevitch, 1999) intra- and inter-ventricular dispersion (Verduyn et al., 1997) in triggering TdP. Indeed, compounds known to induce TdP in humans have been shown to exacerbate the dispersion of ventricular repolarization. By contrast, some compounds known to induce LQTS with low propensity to induce TdP have been demonstrated to minimally affect ventricular dispersion (Sicouri et al., 1999; Di Diego et al., 2003).

Several models have thus been developed to take into account physiological mechanisms of drug-induced TdP (Carlsson et al., 2000; Hondeghem et al., 2003). Numerous validation studies using different indices of ventricular dispersion reinforced the
assumption that prolongation of the repolarization process by itself is not the sole event initiating TdP, and that disproportional heterogeneity of repolarization (spatial and temporal dispersion) is an important factor constituting an ideal substrate for the development of TdP (Habbab and El Sherif, 1990; Antzelevitch 2004).

This scientific drive for a better understanding of the mechanisms underlying TdP has resulted in the development of experimental models which appear to be more integrative than multicellular preparations, such as arterially perfused left ventricular wedge preparations (Di Diego et al., 2003) or isolated whole heart models (Zabel et al., 1997; Eckhard et al., 1998; Gerhardy et al., 1998; Drolet et al., 2003).

Some of these systems use specific proarrhythmic indices, such as triangulation of the repolarization phase, APD instability (beat-to-beat variability), reverse use-dependence (Hondeghem and Snyders, 1990) and dispersion of repolarization (Hondeghem et al., 2003). These experimental models have been proven to be reliable methods for the detection of proarrhythmic signals in TdP-like arrhythmias.

ECG

The electrocardiogram represents series of waves generated by electrical events of the different chambers and conduction pathways within the heart. ECG recording in animals helps detect proarrhythmic indices based on the analysis of the different waves and helps characterize the nature of the observed arrhythmias. A general assessment of the risk for drug-induced TdP is mainly based on the ability of the NCE to prolong the QT interval, induce abnormal T wave or U wave, and/or TdP. The QT interval on the ECG is measured from the start of the QRS complex to the end of the T wave. It is difficult to measure the QT interval accurately, due of the lack of precision in determining the exact end of the T wave and when U waves, which tend to merge with the end of the T wave, are present. Additionally, U waves may represent some abnormalities, such as hypokalaemia, even though they may also be present in the ECG under normal conditions.
Numerous experimental systems aimed at inducing TdP-like arrhythmias have been developed (Verduyin et al., 1997; Carlsson et al., 2000; Weissenburger et al., 2000). However, such models have serious limitations due to the particular experimental conditions used, e.g., bradycardia induced by AV block, hypokalemia induced by diuretics. These complex protocols again stress the inherent difficulties in inducing TdP experimentally. When they develop, such induced arrhythmias typically do not display the classical TdP morphology; moreover, tachycardia rarely terminates spontaneously, which is different from the clinical situation. QTc increases are thus used as a surrogate marker. Minimum values of QTc increases that are considered significant are usually of the order of 10% in animal species (Hammond et al., 2001), whereas in humans, a relatively modest prolongation of 5 ms is a matter of concern. Indeed, so far, there has not been a single preclinical method, including in vivo animal models, shown to be 100% predictive of the risk for TdP occurrence in humans. In addition, the respective relevance of the animal models (including non-human primates) for such arrhythmias is still a matter of debate. The fact that reproducibility of TdP is not always achievable in animals even in the presence of highly potent I_{Kr} blockers suggests that other predisposing factors or unknown combinations of factors are involved in acquired LQTS-induced TdP.

2.3 Modeling Methodologies Applicable to Safety Assessment

This study proposed the use of two types of simulation modeling: forward modeling to predict clinical proarrhythmic risk from channel-level pharmacology and reverse modeling to allow estimation of ion channel pharmacology from canine Purkinje action potential traces.

One or more models of markers predictive of proarrhythmic risk in patients were required. Surface electrocardiograms are the standard measure used in the clinical assessment of the proarrhythmic potential of drugs. At the time of this study, sufficiently predictive computer models of human ECGs were not available; simulations of canine transmural ECG experiments were used instead. This assay is a good experimental analogue for the human ECG and can model drug-induced changes in QT interval as well as changes in T-wave morphology that are accepted markers of proarrhythmic risk (Yan
and Antzelevitch 1998; Yan, Shimizu et al. 1998; Dumaine, Towbin et al. 1999; Antzelevitch and Fish 2001; Zygmunt, Eddlestone et al. 2001; Thomas, Gerlach et al. 2003). Recently, computer models of action potentials in human cardiac myocytes have become available (Ten Tusscher, Noble et al. 2004) which may make it possible to simulate human ECGs in future drug studies.

In order to perform the ECG simulations, the effects of each compound on all of the key ion currents were required. These ion-channel level effects are not generally available in practice. The approach used was to reverse-engineer ion channel pharmacology from the canine action potentials. Such an approach requires a forward simulation model of the canine Purkinje fiber assay, which measures the time course of transmembrane action potential while varying electrical pacing and drug dose according to a specified protocol. In this study, the ion channel effects of test drugs were estimated using the Purkinje model and nonlinear parameter estimation techniques. The models and nonlinear estimation techniques used in this study are reviewed in the following sections.

3 Methods

3.1 Experimental Methods

Preparation of Guinea Pig Ventricular Myocytes

Single ventricular myocytes were isolated from guinea pigs using a method modified from Salata et al., 1995. Briefly, male guinea pigs (250 g) were killed by cervical dislocation. Thoracotomy was subsequently performed, and the heart was removed and immediately transferred to oxygenated (100% O₂) cold saline. The heart was perfused retrogradely at 10 ml/min through the aorta with an oxygenated Ca²⁺-free saline at 37°C in three stages: first with standard Ca²⁺-free saline for 5 min, second with the same solution containing 280 U/ml type II collagenase (Worthington Biochemical, Lakewood, NJ) plus 0.75 U/ml type XIV protease (Sigma-Aldrich, St. Louis, MO) for 8 min, and finally with saline containing 0.2 mM CaCl₂ for additional 7 min. The left ventricle cut into small pieces was gently shaken at room temperature for about 5 min to disperse
single myocytes. The isolated myocytes were then maintained at 37°C for electrophysiological recording, usually within 48 h after isolation.

Patch-clamp Measurements for hERG, L-Type Ca\(^{2+}\) and Na\(^{+}\) Currents

hERG patch clamp experiments were performed with HEK293 cells stably transfected with hERG cDNA (C.T. January, University of Wisconsin, USA). Sodium channel patch clamp experiments were performed with HEK293 cells stably transfected with SCN5A cDNA (S. Heinemann, University of Jena, Germany). Cells were kept under standard cell culture conditions (Traebert et al. 2004).

All ionic currents were recorded using the whole-cell configuration of the patch-clamp technique (Hamill et al., 1981). Electrodes (2–5 MΩ resistance) were made using a DMZ universal puller (Zeitz-Instruments, Munich, Germany) from glass capillary tubes (WPI, Sarasota, FL). For hERG and sodium channel recordings, electrodes were filled with the following solution: KCl 130; MgCl\(_2\) 1.0; Ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) 5; Mg-ATP 5; HEPES 10; pH 7.2 with 1 M KOH. For Ca\(^{2+}\) channel recordings, the electrode solution contained 130 mM cesium methanesulfonate, 20 mM tetraethylammonium chloride, 1 mM MgCl\(_2\), 10 mM EGTA, 10 mM HEPES, 4 mM Tris-ATP, 0.3 mM Tris-GTP, 14 mM phosphocreatine, 50 U/ml creatine phosphokinase, pH 7.2 with CsOH. The external solution for hERG and sodium channel recordings contained the following: NaCl 137; KCl 4; CaCl\(_2\) 1.8; MgCl\(_2\) 1.0; D-glucose 10; N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) 10; pH 7.4 with 1 M NaOH. The external solution used for recording Ca\(^{2+}\) currents contained the following: 137 mM NaCl, 5.4 mM CsCl, 1.8 mM CaCl\(_2\), 1 mM MgCl\(_2\), 10 mM HEPES, 10 mM glucose, pH 7.4 with NaOH. All ionic currents were recorded at 35 ± 1°C using an Heka amplifier (Heka Electronics, Germany). Currents were analyzed using the Pulse suite of software (Heka electronics). IC\(_{50}\) values were obtained by sigmoidal fit of the data (SigmaPlot). For hERG current measurements cells were held at -75 mV, depolarized to +10 mV for 500 ms and then repolarized to -40 mV for 500 ms to produce the tail current. Ca\(^{2+}\) currents were elicited by a depolarizing step to 0 mV from a holding potential of -40 mV. For the sodium current measurements cells were held at -100 mV.
and depolarizing pulses to +20 mV were delivered. All voltage protocols were delivered at a frequency of 1 Hz as a train of 50 pulses.

3.2 Mathematical Modeling Methods

Simulation of the Canine Wedge Transmural Electrocardiogram

The transmural ECG model used in this study was developed using the techniques described in (Viswanathan, Shaw et al. 1999; Viswanathan and Rudy 2000). The model was then adapted to a canine preparation by replacing the Luo-Rudy cell models with commercially-developed canine myocyte models based upon work by Rice and others (Jafri, Rice et al. 1998; Rice, Jafri et al. 1998; Rice, Jafri et al. 1999; Rice, Winslow et al. 1999; Rice, Jafri et al. 2000). Figure 1 is a schematic diagram that illustrates the key ion currents represented in the myocyte models. Cellular coupling conductances and key ion channel current strengths were scaled as a function of wall depth to match the transmural resistivity, action potential, and ionic current profiles reported by Antzelevitch and colleagues (Antzelevitch et al., 1998; Shimizu and Antzelevitch 1998; Yan and Antzelevitch 1998; Yan et al., 1998). This model also has modifications to account for differences due to sex, history of congestive heart failure, and variations in extracellular electrolytes. These are the major patient risk factors recommended for consideration by the FDA in (FDA 2004). Recently, integrative computer models incorporating data from particular genetic variants of ion channels have proven useful in linking altered channel function to the mechanisms of arrhythmia in patients. (Clancy and Rudy 1999; Clancy and Rudy 2001; Clancy and Rudy 2002; Liu, Tateyama et al. 2002; Clancy, Tateyama et al. 2003; Liu, Clancy et al. 2003). These genetic variations are an additional source of individual patient risk and a promising area of continued investigation, but only results using drug dose and pacing rates as risk factors are presented in this paper.

In order to simulate drug-induced changes to ECG, control simulations of transmembrane action potentials and transmural ECG were performed with no drug. The effects of each test compound were then evaluated at concentrations of 0.1, 0.2, 0.5, 1, 2, 5, and 10 μM. Pacing rate-dependence of the test compound’s actions were evaluated by simulating action potentials at basic pacing cycle lengths (BCL) of 300, 500, 800, 1000, 2000, and
4000 msec. Following changes in drug concentration or pacing rate, action potentials were simulated for sufficient time (10 cycles) to allow stabilization before making measurements.

Simulation of Drug Effects on Repolarization

A simple pore-block model was used to account for the effects of drugs. The effects of drugs were modeled using the standard sigmoid dose-response curve parameterized by the half-maximal response dose, IC$_{50}$. For ion currents (I$_x$) affected by a test compound, the model assumes that the channel-specific IC$_{50}$ (IC$_{50,x}$) and Hill Coefficient (N$_x$) characterize a sigmoidal dose-response relationship for the inhibition of current (I$_x$ vs. I$_{x,control}$) as a function of concentration, [Drug]. Unless otherwise stated, the Hill Coefficient was fixed at N$_x$ = 1.0.

\[
\frac{I_x([\text{Drug}])}{I_{x,control}} = \frac{1}{1 + \left(\frac{[\text{Drug}]}{\text{IC}_{50,x}}\right)^{N_x}}
\]

This simple pore-block model was sufficient for these compounds but has been shown to be insufficient to describe the action of many drugs (Starmer, Grant et al. 1984; Starmer and Grant 1985; Irvine 1998; Irvine, Jafri et al. 1998; Irvine, Jafri et al. 1999). All of the improved models proposed in these references are more complex. It is an open question whether the parameters of these complex models will be observable from standard Purkinje action potential data.

Rapid Development of a Purkinje Fiber (PF) Model

While rabbit Purkinje models have been published (DiFrancesco and Noble 1985), no model of the canine Purkinje preparation used in this study was readily available. The simulations of the canine ventricular myocyte (CVM) model were found to be closer than the rabbit Purkinje model to the in vitro behavior of canine Purkinje fiber. This may be
due in part to recent developments in calcium handling and other differences between recently published models and DiFrancesco-Noble, but also due to the fact the hyperpolarization activated current, present in the DiFrancesco-Noble model, is not observed in the preparations used for drug safety assessment (Cordeiro, Spitzer et al. 1998; Lu, Vlaminckx et al. 2002). This initial study led to the hypothesis that one could develop a “rapid prototype” Purkinje fiber model by adjusting the macroscopic conductances of the 14 ion currents represented in the myocyte model.

Nonlinear parameter estimation techniques were used to estimate the conductance parameters in the myocyte model to fit the Purkinje fiber data. The conductances were calibrated using action potentials from samples at multiple pacing rates with no drug and with various doses of a reference compound, dl-sotalol. Conductances estimated from calibration data were compared to experimentally-observed currents differences published in (Cordeiro, Spitzer et al. 1998; Lu, Vlaminckx et al. 2002). The results of this validation step are discussed in a later section. The canine Purkinje model thus developed represents a novel model of canine Purkinje; however, it is to be considered a model of the in vitro experiment and not a model of Purkinje under physiological conditions.

Estimation of Ion Channel Pharmacology from Action Potential Measurements

Given a model of our Purkinje experiments, the next step was to reverse engineer the ion channel pharmacology of each compound from the laboratory action potential data. Since estimates of I_{Kr} pharmacology were already available from HEK/hERG data, only the other cardiac ion currents ($I_{Na,sus}$, I_{CaL}, I_{Ks}, I_{to1}, I_{NaCa}) responsible for repolarization were considered in the study. Large variation among preparations in AP morphology, as seen in Figure 3, if ignored, would have been an important source of error in this analysis. The standard deviation of baseline APD$_{90}$ was approximately 40 ms for all the preparations used to study Compound A. This variation exceeded the change in APD$_{90}$ caused by the compound. Such large variation would have biased estimates of ion channel pharmacology, so it was necessary to normalize the PF model to each
preparation. This was accomplished by estimating the conductance parameters to fit the 0-dose (0.5 Hz and 1.0 Hz) traces for that preparation.

For each drug data set, the parameter estimation step returned five IC$_{50}$ values, corresponding to best fit of each of the five non-I$_{Kr}$ currents. Monte Carlo analysis was then used to generate minimum and maximum plausible values for each IC$_{50}$ value, defining a range of IC$_{50}$ combinations that well-described the AP data. The threshold used to determine the uncertainty range was two-fold over the best score. These confidence intervals were then used to identify significant ion channel pharmacology. Drug effects on any currents for which the confidence interval contained IC$_{50} > 100$ micromolar were deemed not significant.

Data Preprocessing

In all AP fitting activities described in this study, the AP data was truncated to remove the stimulus artifact and the post-repolarization plateau. Each trace was voltage-shifted to match the 0-dose baseline voltage to the baseline voltage predicted by the model. Each AP trace was also time-shifted to synchronize the time of maximum upstroke velocity. In addition to the 14 conductance parameters, a stimulus time offset parameter was used to account for the variable delay between the real stimulus time and the observed AP onset. The delay was due to the spatial separation between the stimulus and recording electrodes in the PF preparation, which was not accounted for in the model.

Optimization

Local optimization (FMINSEARCH from MATLAB) was used for all nonlinear parameter estimations. The success of this method proved to be strongly dependent upon the initial parameter estimates, so the results were subsequently checked by global optimization methods (Storn and Price 1996; Price and Storn 1997). Bounds constraints held the conductance parameters to be non-negative by assigning a penalty to the error function value to $+\infty$ if any of the parameters were negative. IC$_{50}$ parameters were held strictly positive by performing unconstrained optimization on the log$_{10}$ (IC$_{50}$) values.
Error metrics

Time-weighted error metrics were used to compare predicted and measured AP recordings to compensate for the non-uniform sampling rate used in the experiments. For a collection of values \(\{f_1, \ldots, f_N\} \) at times \(t_1, \ldots, t_N \), define

\[
\|f_j\|_2^2 = \sum_{i=1}^{N-1} \left(f_i^2(t_{j+1}) + f_i^2(t_j) \right) (t_{j+1} - t_j)/2 \quad (\text{This metric is a discrete approximation to the square of the } L_2\text{-norm of } f(t), \text{ a function defined continuously on the interval } [t_1, t_N]).
\]

Given a parameter vector \(p \), a model \(y(t; p) \), a predicted action potential recording \(y_1 = y(t_1; p), \ldots, y_N = y(t_N; p) \) and an observed AP recording \(z_1, \ldots, z_N \) defined at times \(t_1, \ldots, t_N \), we define \(E(p) \) to be the relative error between predicted and observed AP traces, based on the metric defined above:

\[
E(p) = \|y_j - z_j\|^2 / \|z_j\|^2.
\]

For the CVM to PF conversion step, the 14 conductance values, represented as a vector \(G \), were fitted minimizing the maximum error \(E(G) \) over all of available dose and pacing rate combinations. The \(I_{Kr} \) IC\(_{50}\) for the pure \(I_{Kr} \) blocker (\(dl \)-sotalol) was also allowed to vary but remained within its experimentally determined confidence interval. For the individual PF calibration step, a fit of \(G \) was made to the 0-dose AP traces by minimizing the sum over both pacing rates (0.5 Hz and 1.0 Hz) of \(E(G) \). For the IC\(_{50}\) estimation step, the five unknown IC\(_{50}\) values, represented by the vector \(F \), were estimated by minimizing the maximum error \(E(F) \) over all of the pacing rate and concentration combinations for which AP data was available.

A number of weighting schemes were tested; all of the metrics described above were found to work well in practice. Subsequent investigations showed that statistically based weighting schemes, e.g., chi-squared, also perform well and have the advantage of a statistical interpretation.
4 Results

4.1 Experimental Results

COMPOUND A and COMPOUND B

During preclinical safety assessment, COMPOUND A and COMPOUND B were found to inhibit the maximum hERG tail current with an IC$_{50}$ of 1.48 µM and 1.82 µM respectively, in a standard patch-clamp hERG assay performed at 37°C, using hERG stably transfected in HEK293 cells.

Subsequently, additional pre-clinical results obtained in canine Purkinje fiber stimulated at the rates of 1 and 0.5 Hz in the presence of COMPOUND A and COMPOUND B suggested a mixed ion channel blocking effect instead of a pure hERG blocking effect. Indeed, instead of a concentration-dependent APD prolonging effect developing at the plateau level and enhanced at lower stimulation rates, the effects of COMPOUND A and COMPOUND B on action potentials recorded from canine Purkinje fibers were characterized by an APD shortening starting at the plateau level, which subsequently reduced the duration of the final repolarization phase at both rates (Figure 2).

The vehicle used was 0.1 % DMSO. At the stimulation rate of 1 Hz, the Action Potential Duration (APD) measured at 60 % of repolarization (APD$_{60}$) was found to be significantly decreased with **COMPOUND A** (0.1, 0.3, 1, 3 and 10 µM; n=4) at the concentrations of 3 (-19 ± 6 % vs. vehicle) and 10 µM (-31 ± 8 % vs vehicle). **COMPOUND A** significantly decreased APD at 90 % of repolarization (APD$_{90}$) at 3 (-12 ± 5 % vs. vehicle) and 10 µM (-18 ± 6 % vs. vehicle). See Table 1.

At the stimulation rate of 1 Hz, APD$_{60}$ and APD$_{90}$ were not significantly modified by **COMPOUND B** (0.1, 0.3, 1, 3 and 10 µM; n=6) at any of the concentrations tested. See Table 1.

In addition to the effects on the repolarization phase, COMPOUND A significantly decreased the AP amplitude (APA) at 1 (-8 ± 3 % vs vehicle) and 10 µM (-15 ± 5 % vs vehicle). The other parameters (maximum rate of depolarization, MRD; Resting
Membrane Potential, RMP) were not altered by increasing concentrations of COMPOUND A. COMPOUND B did not significantly modify APA, UA and RMP.

In summary, no APD prolongation (APD$_{60}$ or APD$_{90}$) in canine Purkinje fibers was observed in the presence of COMPOUND A or COMPOUND B up to 10 µM despite IC$_{50}$s on hERG in the low micromolar range for both drugs. By contrast, the only statistically significant finding throughout the study was an APD shortening in the presence of high concentrations of COMPOUND A (3 and 10 µM). This feature strongly suggests that both COMPOUND A and COMPOUND B may reduce other types of ion currents such as the inward L-type calcium current or the sustained inward sodium current, both involved in the maintenance of the plateau phase in Purkinje fibers. Reducing these currents may have masked the APD prolongation associated with the measured hERG inhibition.

Summary

The pre-clinical data obtained for COMPOUND A and COMPOUND B showed strong evidence that these drugs may not only block the delayed rectifier potassium current (I$_{Kr}$), but are also likely to interact with the sodium (I$_{Na}$) and calcium (I$_{CaL}$) channels. No previous study at ion channel level had characterized the compounds’ effects on these two channels, as well as on the slowly activating component of the delayed rectifier (I$_{Ks}$). Reducing I$_{Ks}$ current (loss of function by mutations in the gene encoding for this channel or by pharmacological actions) has been demonstrated to cause QT prolongation without the attendant risk accompanying pure I$_{Kr}$ blockers (Shimizu and Antzelevitch 1998). Moreover, the SCN5A-mediated cardiac sodium current has been shown to contain a late (also known as sustained or window) component, I$_{Nasus}$, which remains active throughout the plateau phase and serves to sustain the plateau of the action potential, especially in Purkinje fibers (Attwell et al., 1979; Kunze et al., 1985; Sakakibara et al., 1993). Mutations of the SCN5A sodium channel, which enhance this sustained current have been shown to be responsible for action potential prolongation and delay of repolarization in a variant (LQT3) of the long QT syndrome (Wang et al., 1995; Dumaine et al., 1996). Pharmacologic blockade of this inward current has been shown to shorten the action potential and mitigate the prolonging effects of IKr inhibition (Sicouri et al., 1997). Some
sodium channel blockers inhibit the late component of the current more potently (i.e., at lower concentrations) than they do the fast (peak) sodium current (Ono et al., 2000; Nagatomo et al., 2002). Ideally, the effect of drugs on peak and sustained sodium current should be characterized independently however, a reasonable approximation is to treat a compound’s action on both portions of the current identically. The impact of combined channel blockade on the risk of QT prolongation and TdP is not well understood and is likely to be multi-factorial. However, several drugs displaying mixed ion channel blocking effects, i.e., by reducing at the same concentration range both inward and outward currents, have been demonstrated to be devoid of proarrhythmic effects (Sicouri et al 1997, Benardeau et al 2000).

The modeling approach was next used to extract best-estimate IC$_{50}$ for all major cardiac ion channels from a detailed analysis of the complete canine Purkinje Fiber Action Potentials. The resulting dose-response data obtained by modeling was then used to predict the effects of the compounds on AP and transmural electrocardiogram.

4.2 Modeling Results

The pure I$_{Kr}$ blocker (dl-sotalol) HEK293 (I$_{Kr}$) data and PF action potential data were used to prototype the to the canine Purkinje fiber (PF) assay system from the canine ventricular myocyte (CVM) model. Next, the data measuring the effects of drug COMPOUND A and COMPOUND B on whole cell patch clamped currents in HEK293 cells transfected with hERG cDNA (I$_{Kr}$), and on action potentials in isolated canine Purkinje fibers paced at 1 and 0.5 Hz, were used to reverse-engineer the drugs’ pharmacological profiles on the key non-I$_{Kr}$ ion currents. The resulting IC$_{50}$ profiles were then used to drive the forward simulation study predicting the effects of COMPOUND A and COMPOUND B on isolated cardiomyocytes, individual myocytes in a transmural wedge preparation, and transmural electrocardiograms. The results of this simulation-based analysis are detailed below.
Rapid Prototyping of a Purkinje Fiber Model from a Canine Ventricular Myocyte Model

The original canine ventricular myocyte (CVM) and fitted canine Purkinje fiber (PF) conductance parameters for each of the currents are shown in Table 2. The results are in agreement with certain experimental observations on the differences between currents in CVM and PF in canine. In particular, (Cordeiro, Spitzer et al. 1998) experimentally tested rabbit Purkinje potassium currents and compared the results to ventricular myocytes. In agreement with the experimental observations: the estimated IK1 is much smaller in PF than CVM; IKr and IKs are still present but are smaller in PF than in CVM. In contrast to the experimental observation that the Ca-independent transient outward current is larger in PF than CVM, the fitted Ito1 for PF was smaller than the original CVM value.

IC50 predictions for COMPOUND A and COMPOUND B

The observation that COMPOUND A and COMPOUND B block IKr (HEK/hERG COMPOUND A IC50 = 1.48 µM, COMPOUND B IC50 = 1.82 µM) without prolonging action potential duration in the Purkinje fiber assay suggests that these compounds block multiple ion channels. Using the parameter estimation techniques described in the Methods section, the best-fit IC50 profiles were estimated for the two compounds. Both COMPOUND A and COMPOUND B were predicted to significantly block the sustained sodium (INasus) and the L-type calcium (ICaL) currents; the predicted IC50 values for these two currents are given in Table 3. The other three currents (INaCa, IKs, Ito1) were predicted not to play a significant role in the pharmacology of either compound because the IC50 ranges for these currents exceeded the “effectively no-block” threshold of 100 micromolar.

As a post-estimation validation activity, the respective hERG peak tail current or inward peak Na+ and Ca2+ currents at the last 4 pulses (pulse 46-50) of each train were used to determine the inhibitory effects of COMPOUND A and COMPOUND B. The drugs were tested at 5 increasing concentrations with n = 4-6 cell per concentration.
hERG: hERG channel activity in stably transfected HEK293 cells was inhibited dose-dependently by COMPOUND A with and IC$_{50}$ = 1.48 µM and by COMPOUND B with and IC$_{50}$ = 1.82 µM. The reference compound E-4031 (100 nM) inhibited hERG channel activity by 98.1 ± 2.3 %. The effects of COMPOUND A and COMPOUND B on hERG were known at the outset of the study and were not subject to parameter estimation, so these results serve to validate the experimental hERG results used previously.

Calcium: Calcium channel activity in isolated guinea pig myocytes was inhibited dose-dependently by COMPOUND A with and IC$_{50}$ = 1.29 µM and by COMPOUND B with and IC$_{50}$ = 2.15 µM. The positive control nifedipine (1 µM) inhibited Ca$^{2+}$ channel currents by 95.0 ± 3.5% (n = 3). These experimentally measured values agree very well with and validate those predicted by our global estimation procedure.

Sodium: Sodium channel activity in isolated guinea pig myocytes was inhibited dose-dependently by COMPOUND A with and IC$_{50}$ = 2.3 µM and by COMPOUND B with and IC$_{50}$ = 4.48 µM. The positive control tetrodotoxin (20 µM) inhibited Na$^{+}$ currents by 97.2 ± 3.2 % (n= 3). These findings are consistent with our estimated IC$_{50}$s for these drugs.

The quality of fit of the predicted AP traces from these IC$_{50}$ values can be seen in Figure 3. These plots illustrate visually how much better the multi-channel blockade profiles explain the data than does the “null hypothesis” of I$_{Kr}$-block only.

Given the cost involved in performing patch clamp testing for the six key repolarization currents in native myocytes, parameter estimation was used instead to extract best-estimate IC$_{50}$s for all major cardiac ion channels from the complete set of dose- and rate-dependent canine PF action potentials. The resulting current-level dose-inhibition estimates were then used to perform compound specific predictions of the compounds’ effects on myocyte AP and transmural electrocardiogram, which are described in the following section.
Forward Predictions of Action Potentials in Isolated Myocytes

The canine Purkinje fiber data for COMPOUND A and COMPOUND B suggest that these compounds block multiple ion channels. However, the only direct pharmacological evidence of ion channel blockade was limited to the hERG channel. For comparison, the “null hypothesis” of a pure I_{Kr} Blocker (i.e., no effect on other ion channels) was considered. Such a compound represents a canonical example of a QT-prolongation and proarrhythmia risk and therefore is a good benchmark for comparison. As described in the Methods, a sigmoidal dose-response curve was used to calculate the individual reductions in I_{Kr} channel conductance for a given concentration within the computer models. Since these data have been shown to represent generic I_{Kr} channel inhibition, the results are given in concentrations relative to the I_{Kr} channel IC$_{50}$ rather than the absolute concentration.

The simulated effects of a pure I_{Kr} blocker on action potentials of epicardial and M cells paced at 1000ms BCL are shown in Figure 4 (top). As expected, the action potential was prolonged in a concentration-dependent fashion by the I_{Kr} blockade and the amount of AP prolongation (as percent of control) was greater in M cells than in Epi cells. No early after-depolarizations (EADs) were observed in any simulated AP. Note the time scale extension (*) to account for severe AP prolongation.

The concentration-dependent effects of COMPOUND A on models of isolated myocytes are considerably different than those of the pure I_{Kr} blocker. Rather than causing uniform and significant prolongation of the action potential, the response of the M cells to COMPOUND A was biphasic. At concentrations up to 1 μM, The M cell action potential was shortened while at higher concentrations (5-10 μM), the M cell APD increased (vs. simulations at 0.1 to 1.0 μM concentrations) though it did exceed drug-free control levels. Such a behavior (initial decrease of APD at low drug concentrations, followed by an increase at higher concentrations) does not match experience gained from experiments, and deserves further investigation. Similarly to M cell simulations, the Epi AP is shortened by low doses of COMPOUND A. While high doses (1-10 μM) prolong AP up to levels greater than control, faster pacing rates (500 msec, data not shown) mitigate this behavior. Overall, the absence of action potential prolongation in both cell types suggests
that the multiple ion channel blockade of COMPOUND A mitigates the risk of QT prolongation and proarrhythmia posed by just the I_{Kr} blocking tendencies.

The concentration-dependent effects of COMPOUND B on models of isolated myocytes are similar to those of COMPOUND A and likewise do not reflect the behavior of a pure I_{Kr} blocker. At all rates, COMPOUND B causes the simulated M cell AP to shorten and the plateau voltage to decrease. Similarly, the Epi AP plateau is diminished with increasing dose, though the APD is largely unaffected until higher concentrations ($10 \, \mu M \text{ at } 1000 \text{ msec}, 5–10 \, \mu M \text{ at } 2000 \text{ msec}$) are reached. At these levels, COMPOUND B has inhibited the calcium influx via L-type channels to the point that calcium-induced calcium release fails to trigger yielding severe AP abbreviation. Because COMPOUND B shortens the M cell AP while leaving the Epi one largely unchanged ($<5 \, \mu M$), the difference in APD shrinks with increasing concentration and suggests that COMPOUND B does not demonstrate significant QT prolonging capability.

Slow cycle lengths are a known risk factor in the development of drug-induced proarrhythmia. When the models were paced at 2000 msec cycle length (data not shown), the behavior for B mimicked that observed for 1000msec pacing however, the inhibition of calcium influx via L-type channels caused severe shortening of the action potential at lower concentrations (COMPOUND A: $10 \, \mu M$, COMPOUND B: 5–10 μM). Rapid pacing at 500 msec cycle length (data not shown) abolished the action potential collapse and lessened the drug-induced action potential shortening.

Transmural Electrocardiogram (TxECG) and Dispersion of Repolarization

The concentration- and rate-dependent effects of these compounds were also simulated in myocytes embedded in a heterogeneous cable model of the ventricular wall. As observed in isolated cells, increasing concentrations of the pure I_{Kr} blocker in the coupled cable model prolonged the action potentials of Epi and M cells in a reverse-rate dependent fashion (data not shown). Importantly, electrotonic coupling between the cells modulates the individual cellular response to channel blockade. The extent of action potential prolongation in epicardial cells was increased (vs. isolated Epi) while the prolongation in M cells was diminished (vs. isolated M). The upstroke amplitude and Phase 1 overshoot
in the M cell were also diminished by the electrotonic load of propagation in the cable, a factor absent in isolated cells. The upstroke of the epicardial cells did not display the same marked changes because they are located on the cable boundary where the action potential terminates and thus do not possess a large electrotonic load for continued propagation.

Analysis of the transmural electrocardiogram (TxECG) computed from the heterogeneous cable model indicates that QT interval is prolonged by a pure I_{Kr} blocker (Figure 5) in a dose- and reverse-rate dependent fashion though the morphology and orientation of the T wave were unchanged. The concentration- and rate dependent effects of COMPOUNDS A and B on the key repolarization markers (QT interval, TDR, and APD dispersion) are shown in a more compact form in the first column of Figure 6. The first pane shows that, for BCL=1000 msec, the pure I_{Kr} blocker causes significant (10%) QT prolongation at concentrations near IC$_{50}$/2. The next pane in the column shows that increasing I_{Kr} blockade increases the transmural dispersion of repolarization (TDR), measured as the time interval from earliest to latest repolarization across the wall. Increases in TDR have been shown to accompany the substrate for the development of Torsades de Pointes (Antzelevitch et al. 1999; Shimizu and Antzelevitch 1998; Shimizu and Antzelevitch 2000) and therefore may be an alternative to QT prolongation as a marker of true pro-arrhythmic risk. The bottom panel of this figure shows that APD dispersion, measured as the maximum difference in APD across the wall, is increased by slowing the pacing rate and by increasing I_{Kr} blockade.

Like the isolated cell models, the action potential duration of both epicardial and M cells in the heterogeneous cable undergo a biphasic response to increasing concentrations of COMPOUND A (data not shown). In both cell types, the minimal APD is reached at the 0.5–1 μM concentration however; the extent of prolongation at high doses causes Epi cells to exceed control levels while M cells do not. Thus, APD dispersion is summarily decreased by this drug. The concentration-dependent effect of COMPOUND A on the QT interval measured in the TxECG is likewise biphasic (shortening then lengthening) but alters the T wave morphology substantially (Figure 5, middle column). Despite the dramatic changes in the T wave, the transmural dispersion of repolarization in the cable is quickly diminished by COMPOUND A (Figure 6, center). Although there is a moderate
increase in TDR as dose is further increased, these values are still below the control values (time interval from earliest to latest cellular repolarization across the wall) The bottom panel shows that APD dispersion, measured as the maximum difference in APD across the wall, decreases monotonically with the addition of COMPOUND A. The concentration and rate dependent effects of COMPOUND B on TxECG and repolarization markers computed in the spatially-heterogeneous cable model are very similar to those of COMPOUND A (Figure 5 and Figure 6). Like COMPOUND A, TDR, and APD dispersion are diminished by COMPOUND B at all pacing rates. These data taken together suggest COMPOUNDS A and B lack key markers of proarrhythmic risk attending a pure I_{Kr} blocker.

5 Discussion

The work presented in this paper represents an important improvement in the practical application of physiologically-based mathematical models to the nonclinical cardiac safety assessment process. Previous mathematical modeling efforts produced simulations that can predict the compound effects of cell, tissue, and organ-level cardiac safety markers over many combinations of patient risk factors. Use of these models, however, required characterization of channel-level pharmacology at a level of detail well beyond the industry-standard hERG and Purkinje fiber assays. In this study, the missing data was estimated by applying parameter estimation techniques to hERG and Purkinje fiber assay data.

Parameter estimation techniques were used to prototype a canine purkinje fiber model from a canine ventricular myocyte model by adjusting 14 channel conductance parameters to fit Purkinje action potential traces under varying doses of a pure I_{Kr} blocker, dl-Sotalol. The resulting conductance values provided not only a much-improved fit to the Purkinje data; they also correctly predicted known physiological differences in levels of I_{K1}, I_{Kr}, and I_{Ks} between Purkinje fibers and myocytes (Cordeiro, Spitzer et al 1998). The prototype model did not agree with the published differences for I_{ot1}, the Ca-
independent transient outward current; this discrepancy is a topic of ongoing
investigation, but the model was deemed sufficient to proceed to the next step.

The next step in the project was to analyze the AP data from two compounds with known hERG pharmacology and unknown pharmacology on the other cardiac ion currents (I_{Na,sus}, I_{CaL}, I_{Ks}, I_{to1}, I_{NaCa}) responsible for repolarization. Our analysis predicted that both compounds cause physiologically significant (IC_{50} < 100 micromolar) blockade of I_{Na,sus} and I_{CaL} but not the other three currents. Post-analysis experimental validation studies on these two currents indicate that the predicted IC_{50} values are accurate to within the predicted uncertainty ranges. In order to check the results produced by local optimization, the global optimization technique was used to check the quality and uniqueness of the locally estimated IC_{50}s. The global nonlinear optimization technique proved superior to the local estimator, in that it found a better fit to measured action potentials and the IC_{50} estimates were closer to subsequently measured values, as shown in table 3.

Finally, the estimated ion channel pharmacological profiles for the two compounds were used to predict, over many dose and pacing rate combinations, the effects of these compounds on safety markers such as myocyte action potential duration, transmural dispersion of repolarization, and transmural electrocardiogram. The project demonstrated that it is possible to use physiological simulation models to obtain additional decision-making information on the potential risks involved with two preclinical compounds, without requiring non-standard pharmacology assays. This initial success may serve as a template for future integration of simulation modeling into the pharmaceutical nonclinical safety assessment process.

The models and techniques described here have a number of limitations that should be noted. This modeling effort did not fully assess sodium-related conduction disturbances, which may also lead to proarrhythmic effects at an integrated tissue level. At the cellular level, the effects of compound-induced sodium current disturbances will need to be assessed in terms of changes in upstroke velocity (V_{max}), upstroke amplitude (UA) and resting membrane potential (RMP).
The Purkinje Fiber (PF) model developed in this work represents a novel model, developed by a rapid data-driven prototyping approach that proved successful in the tests described here. Continued development of this computational approach to assess cardiac safety should include 1) a validation study that examines a library of reference compounds with known mechanism of action on cardiac ion channels, and 2) further development of the PF model to provide a better foundation for the parameter estimation techniques. In future work, will likely use the confidence intervals on conductance and IC\textsubscript{50} values obtained from global estimation to quantify the influence of uncertainty in data on results in the cable model. The number of samples available for this work was too small to estimate sample variability, so future work should characterize this source of uncertainty to improve confidence interval estimates and provide a mechanism for quality control.

The observability of some of the key ion currents, $I_{\text{Na,sus}}$, I_{Kr}, and I_{CaL}, from action potential data was demonstrated mathematically and experimentally, but others, I_{Ks}, I_{tol}, I_{NaCa} proved less observable using these techniques (Table 3). This result may be an inherent limitation of the Purkinje assay, as in the case of I_{Ks}, which has little or no effect on Purkinje action potentials (Cordeiro, Spitzer et al. 1998; Lu, Vlaminckx et al. 2002), or it may be due to the error metrics chosen. Future work should address this issue, either with additional experimental data or improved analysis methods.

5.1 Toward a Simulation-assisted Integrated Nonclinical Safety Assessment Process

One of the major difficulties in assessing the proarrhythmic risk of a pharmaceutical compound is the identification of the rare combinations of drug interactions and patient risk factors that result in increased risk for an otherwise safe drug. It would take hundreds of millions of preclinical experiments and clinical trials with millions of human subjects to analyze what combination of factors promotes an adverse cardiac event, which is not feasible in practice. Another difficulty is that it is not possible to measure directly how the proarrhythmic drugs interfere in the normal operation of ion channels in human cardiac cells. Indirect measures, such as changes in patient electrocardiogram, are difficult to interpret, due to small sample size, noise in the data and confounding risk.
factors and drug interactions (FDA 2003). Therefore, accurately assessing the potential of drug candidates to delay ventricular repolarization leading to a life threatening arrhythmia should be done as early as possible in preclinical development. Recognizing this need, pharmaceutical regulatory agencies worldwide together with industry and academic scientists have developed the guidance urging the integration of several assays in hopes that their combination will provide a superior measure of true proarrhythmic risk (S7B-FDA 2004). The S7B integrated document does not prescribe a fixed guidance of how to conduct safety pharmacology studies; it contains only two required assays. Hence, each organization chooses its own strategy maximize success during research and development.

The core electrophysiological components of the integrated risk assessment for a given pharmaceutical agent can be divided into \textit{in vitro} and \textit{in vivo} categories (see left panel of Figure 7). \textit{In vitro} electrophysiology studies employ either single cell experiments (e.g., heterologous expression systems, disaggregated cardiomyocytes) or multicellular preparations (e.g., Purkinje fiber; papillary muscle; trabeculae; perfused myocardium; intact heart). Heterologous expression systems, where human ion channel protein(s) are expressed in noncardiac cell lines, are used to assess the effects of a compound on a specific ion channel. It needs to be noted that, typically, the ion channel is I_{Kr}.

Disaggregated cells and multicellular tissue preparations can be useful systems in which to study the effects of compounds on the APD, the action potential morphology, and the associated ion currents. While these preparations can facilitate improved understanding of QT-prolonging mechanisms, they are far from ideal since \textit{in vivo} modulators such as plasma protein binding, hormonal regulation, autonomic nervous activity, metabolic clearance, tissue accumulation, and mechanical loading of the ventricular tissue are not taken into consideration. In addition, the spatial heterogeneity of cardiac tissue makes the assessment of any specific cell type somewhat limited in nature.

\textit{In vivo} animal models allow investigation of electrocardiographic changes, disturbances to repolarization, and associated arrhythmias where integrated effects on the full complement of ion channel and cell types are assessed. Importantly, all of the potential modulators absent from the \textit{in vitro} studies are present in the whole animal however;
these factors can make the interpretation of the assay difficult. However, these experiments are performed in controlled environment with a homogeneous animal population and therefore cannot fully address the risk factors in the clinical situation. In our proposed process, mathematical modeling provides a mechanistic framework for understanding interactions in an integrative fashion and bridge experimental results that otherwise may seem contradictory, as well as for quantitative risk assessment (see right panel of Figure 7).

1. **Simulation models of in vitro assays.** This component requires detailed simulation models that correctly map multiple ion channel pharmacology of a drug to accurate simulation of the measurements taken in the in vitro assay. In this study, a model of canine Purkinje fiber drug safety assay was used. This assay measures the time course of transmembrane action potentials whilst varying pacing rates and drug doses. Such models are described by nonlinear systems of time-dependent ordinary differential equations (Muzikant and Penland 2002).

2. **Nonlinear parameter estimation techniques.** Since detailed ion channel pharmacology of a drug is rarely known in practice, this component is used to fill gaps in our knowledge by reverse engineering ion channel drug effects from the in vitro assay data. The parameter estimation step seeks to find the effect of the drug on each of the 8 key ion channels to minimize the error between simulated experiment results and actual data.

3. **Simulation of clinical risk factors.** As discussed earlier, the hERG assay and the canine Purkinje fiber measurements are preclinical surrogates for live animal and human tests. This component requires use of simulations of markers of clinical risk. These markers can be clinical measurements, such as human ECG changes, or can be other preclinical measurements, such as canine wedge preparation electrocardiograms (ECG), live canine or primate ECG changes. These computer simulations can incorporate models of effects that are not directly tested in the hERG or Purkinje assays, such as patient risk factors, drug-drug interactions, and plasma protein binding of the drug.
The forward clinical risk simulations, calibrated to a particular drug, allow for the possibility to simulate many more experiments, over a wider range of conditions, than are feasible in the laboratory or the clinic. The combination of methods provides a more realistic view of physiological changes due to healthy responses, diseases and therapies, potentially resulting in safer drugs at a lower cost in dollars, animal testing, and human life.
6 References

FDA (2003). MEETING OF THE ANESTHETIC & LIFE SUPPORT DRUGS ADVISORY COMMITTEE. FDA, FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH.

Lui DW and Antzelevitch C. Characteristics of the delayed rectifier current (I_{Kr}) and I_{Ks}) in canine ventricular epicardial, midmyocardial, and endocardial myocytes: a weaker I_{Ks} contributes to the longer action potential of the M cell. Circ Res 1995; 76: 351–365.

7 Tables

<table>
<thead>
<tr>
<th>Action</th>
<th>Drug A</th>
<th>Drug A</th>
<th>Drug A</th>
<th>Drug A</th>
<th>Drug A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>0.1 µM</td>
<td>0.3 µM</td>
<td>1 µM</td>
<td>3 µM</td>
<td>10 µM</td>
</tr>
<tr>
<td>RMP (mV)</td>
<td>-1.0 ± 0.4</td>
<td>-0.3 ± 0.9</td>
<td>-1.0 ± 1.3</td>
<td>0.1 ± 0.6</td>
<td>-1.1 ± 0.5</td>
</tr>
<tr>
<td>UA (mV)</td>
<td>1.4 ± 0.5</td>
<td>0.2 ± 1.4</td>
<td>-2.7 ± 2.9</td>
<td>-3.4 ± 2.7</td>
<td>-9.9 ± 3.6</td>
</tr>
<tr>
<td>MRD (%)</td>
<td>3.1 ± 6.4</td>
<td>3.1 ± 4.3</td>
<td>-1.6 ± 4.9</td>
<td>-5.6 ± 8.2</td>
<td>-17.4 ± 18.2</td>
</tr>
<tr>
<td>APD60 (%)</td>
<td>0.9 ± 2.4</td>
<td>4.0 ± 4.6</td>
<td>1.3 ± 3.9</td>
<td>-7.5 ± 2.9</td>
<td>-18.3 ± 7.0</td>
</tr>
<tr>
<td>APD90 (%)</td>
<td>-0.3 ± 2.2</td>
<td>1.0 ± 3.4</td>
<td>-0.7 ± 2.6</td>
<td>-5.0 ± 2.6</td>
<td>-10.4 ± 5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>Drug B</th>
<th>Drug B</th>
<th>Drug B</th>
<th>Drug B</th>
<th>Drug B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>0.1 µM</td>
<td>0.3 µM</td>
<td>1 µM</td>
<td>3 µM</td>
<td>10 µM</td>
</tr>
<tr>
<td>RMP (mV)</td>
<td>0.3 ± 0.3</td>
<td>0.6 ± 0.6</td>
<td>-0.7 ± 0.6</td>
<td>0.4 ± 1.2</td>
<td>-0.3 ± 0.9</td>
</tr>
<tr>
<td>UA (mV)</td>
<td>1.7 ± 1.1</td>
<td>2.0 ± 1.4</td>
<td>1.5 ± 1.1</td>
<td>1.8 ± 1.6</td>
<td>-1.6 ± 0.4</td>
</tr>
<tr>
<td>MRD (%)</td>
<td>-2.9 ± 2.5</td>
<td>-1.8 ± 3.8</td>
<td>-6.4 ± 2.5</td>
<td>-6.7 ± 4.9</td>
<td>-12.7 ± 7.2</td>
</tr>
<tr>
<td>APD60 (%)</td>
<td>1.5 ± 1.1</td>
<td>2.2 ± 0.4</td>
<td>3.5 ± 1.9</td>
<td>0.2 ± 4.1</td>
<td>-5.0 ± 5.2</td>
</tr>
<tr>
<td>APD90 (%)</td>
<td>0.9 ± 0.7</td>
<td>1.9 ± 0.9</td>
<td>3.3 ± 2.0</td>
<td>2.0 ± 3.6</td>
<td>-0.6 ± 4.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>DMSO 0.1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMP (mV)</td>
<td>-0.4 ± 0.4</td>
<td>0.1 ± 0.2</td>
<td>0.1 ± 0.7</td>
<td>-0.3 ± 0.1</td>
<td>0.1 ± 0.5</td>
</tr>
<tr>
<td>UA (mV)</td>
<td>2.4 ± 1.6</td>
<td>0.7 ± 0.9</td>
<td>5.1 ± 1.3</td>
<td>5.1 ± 3.0</td>
<td>5.3 ± 3.2</td>
</tr>
<tr>
<td>MRD (%)</td>
<td>-4.7 ± 3.2</td>
<td>-0.2 ± 3.0</td>
<td>-2.0 ± 3.7</td>
<td>-0.2 ± 2.5</td>
<td>0.3 ± 3.5</td>
</tr>
<tr>
<td>APD60 (%)</td>
<td>2.5 ± 1.8</td>
<td>6.4 ± 1.9</td>
<td>8.5 ± 3.1</td>
<td>11.2 ± 4.4</td>
<td>12.5 ± 4.3</td>
</tr>
<tr>
<td>APD90 (%)</td>
<td>1.3 ± 0.7</td>
<td>3.1 ± 1.3</td>
<td>4.7 ± 2.1</td>
<td>6.8 ± 3.2</td>
<td>7.9 ± 3.1</td>
</tr>
</tbody>
</table>

Table 1 Effects of Compound A, Compound B, and DMSO buffer on action potential parameters.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Function</th>
<th>Endocardial Model</th>
<th>Purkinje Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>IcaLscale</td>
<td>(au)</td>
<td>Scaling factor for L-type calcium current</td>
<td>1</td>
<td>0.5344</td>
</tr>
<tr>
<td>KNaCa</td>
<td>(mA/cm²)</td>
<td>Scaling factor for sodium-calcium exchanger</td>
<td>1500</td>
<td>512.0174</td>
</tr>
<tr>
<td>GKr</td>
<td>(mS/cm²)</td>
<td>Rapidly-activating delayed rectifier channel conductance</td>
<td>0.018</td>
<td>0.0072</td>
</tr>
<tr>
<td>GKs</td>
<td>(mS/cm²)</td>
<td>Slowly-activating delayed rectifier potassium channel conductance</td>
<td>3</td>
<td>0.0444</td>
</tr>
<tr>
<td>GK1</td>
<td>(mS/cm²)</td>
<td>Inward rectifier potassium channel conductance</td>
<td>0.75</td>
<td>0.1311</td>
</tr>
<tr>
<td>GKp</td>
<td>(mS/cm²)</td>
<td>Plateau potassium channel conductance</td>
<td>0.00828</td>
<td>0.0139</td>
</tr>
<tr>
<td>GbCa</td>
<td>(mS/cm²)</td>
<td>Background calcium channel conductance</td>
<td>5.00E-05</td>
<td>0.0001</td>
</tr>
<tr>
<td>GbNa</td>
<td>(mS/cm²)</td>
<td>Background sodium channel conductance</td>
<td>0.00141</td>
<td>0.0012</td>
</tr>
<tr>
<td>GNa</td>
<td>(mS/cm²)</td>
<td>Fast inward sodium channel conductance</td>
<td>10</td>
<td>6.86</td>
</tr>
<tr>
<td>IpCamax</td>
<td>(mA/cm²)</td>
<td>Maximum sarcolemmal calcium pump current</td>
<td>0.025</td>
<td>0.0016</td>
</tr>
<tr>
<td>GNasus</td>
<td>(mS/cm²)</td>
<td>Sustained sodium channel conductance</td>
<td>0.02</td>
<td>0.0083</td>
</tr>
<tr>
<td>Gto1</td>
<td>(mS/cm²)</td>
<td>Transient outward potassium channel conductance</td>
<td>0.25</td>
<td>0.1864</td>
</tr>
<tr>
<td>Gto2</td>
<td>(mS/cm²)</td>
<td>Calcium-activated chloride channel conductance</td>
<td>0.03</td>
<td>0.0001</td>
</tr>
<tr>
<td>INaKmax</td>
<td>(mA/cm²)</td>
<td>Maximum sodium-potassium exchange pump current</td>
<td>1</td>
<td>1.0031</td>
</tr>
<tr>
<td>offset</td>
<td>(s)</td>
<td>Time offset for the delivery of pacing stimuli</td>
<td>0.05</td>
<td>0.0318</td>
</tr>
</tbody>
</table>

Table 2: Model parameter values adjusted in this study and their values before and after the CVM to PF conversion step. Only the bold-faced currents were subject to pharmacological changes in the IC₅₀ estimation step of the study.
<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>ICalScale</th>
<th>INaCa</th>
<th>IKs</th>
<th>INaSus</th>
<th>Ito1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>global</td>
<td>Min</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.27</td>
</tr>
<tr>
<td>estimates & range</td>
<td>Best</td>
<td>1.28</td>
<td>11.00</td>
<td>>100</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>3.32</td>
<td>>100</td>
<td>>100</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td>local best</td>
<td>33.40</td>
<td>>100</td>
<td>>100</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>measured</td>
<td>1.29</td>
<td>2.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>ICalScale</th>
<th>INaCa</th>
<th>IKs</th>
<th>INaSus</th>
<th>Ito1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>global</td>
<td>Min</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.51</td>
</tr>
<tr>
<td>estimates & range</td>
<td>Best</td>
<td>3.47</td>
<td>>100</td>
<td>>100</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>28.80</td>
<td>>100</td>
<td>>100</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>local best</td>
<td>13.24</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>measured</td>
<td>2.15</td>
<td>4.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: IC₅₀ estimation, uncertainty analysis, and experimental validation results for COMPOUND A and COMPOUND B. IC₅₀ values are in micromolar. Measured values for sodium currents (marked with “*”) were for peak sodium current, not necessarily the late component represented by I_{Nasus} in the model. Due to project timing the IC₅₀ values obtained using local optimization methods (labeled “local best”) were used for the forward simulations.
8 Figures

Figure 1 A schematic representation of trans-membrane ion currents responsible for the generation of action potentials and ECG in the mathematical models used in this study.
Figure 2 (left): Concentration-response relationship of COMPOUND A on the AP in the canine PF preparation paced at 1 Hz and 0.5 Hz. (right): Concentration-response relationship of COMPOUND B on the AP in the canine PF preparation paced at 1 Hz and 0.5 Hz.
Figure 3 Validation results for steps in the parameter estimation process. (A) Overlay of fitted Purkinje Fiber model predictions to data from action potentials (APs) under control conditions and under the effect of a pure I\textsubscript{Kr} blocker (dl-sotalol). The red curve is the AP prediction from the best-fit parameter set. (B) Comparison of control (0-dose) AP recordings to illustrate the prep-to-prep variability that necessitated calibration of conductance parameters to each pair (0.5 Hz and 1.0 Hz) of AP control traces prior to attempting to fit IC\textsubscript{50} profiles. “Prep V” refers to the Purkinje preparation used in the Vehicle control pacing studies. “Prep A” and “Prep B” refer to the preparations used to study the effects of COMPOUNDS A and B, respectively. “Prep C” represents an additional preparation, the data from which was not analyzed in this study. (C) Overlay of AP predictions (colored traces) on AP data (black traces) under varying pacing rates and doses of COMPOUND A. The IC\textsubscript{50} profile corresponding to the “null hypothesis” (COMPOUND A blocks I\textsubscript{Kr} only) results in action potentials (green traces) that overshoot the observed data. The red traces are AP predictions from the IC\textsubscript{50} profile comprised of the known I\textsubscript{Kr} IC\textsubscript{50} and the estimated IC\textsubscript{50}s for I\textsubscript{Nasus} and I\textsubscript{CaL}.
Figure 4 Concentration-dependent effects of a pure I_{Kr} blocker (top) and COMPOUNDS A (middle) and B (bottom) in computer models of isolated Epicardial (Epi) and Midmyocardial (M) cells. Shown are isolated Epi and M cells at BCL 1000 msec, under control conditions and for progressively higher concentrations of pure I_{Kr} blocker dl-sotalol (0.1-10 X I_{Kr} IC$_{50}$), COMPOUND A and COMPOUND B (0.1–10 μM). Heavy arrows indicate the direction of increasing concentration. The asterisk (*) on the time axis indicate the compressed time scale imposed to compensate for severe prolongation seen in this panel.
Figure 5 Concentration- and rate-dependent effects of COMPOUNDS A and B on the transmural electrocardiogram (TxECG) in heterogeneous 1-D cable model of ventricular wall. The results of a pure I_{Kr} blocker are shown for comparison. Shown superimposed are TxECG at BCL of 500, 1000, and 2000 msec, under baseline conditions and for progressively higher concentrations (micromolar). For the pure I_{Kr} blocker, concentrations are expressed as multiples of the I_{Kr} IC_{50}.
Figure 6 Concentration- and rate dependent effects of COMPOUNDs A and B on the QT interval (top row), TDR (middle row), and dispersion of APD (bottom row). The results of a pure I\textsubscript{Kr} blocker are shown for comparison. Computations were conducted at BCL of 300, 500, 800, 1000, 2000, and 4000 msec, under baseline conditions and for progressively higher concentrations. For the pure I\textsubscript{Kr} blocker, the concentration ranges from 0.1-10 fold of I\textsubscript{Kr} IC\textsubscript{50}. For COMPOUNDs A and B the range is (0.1-10 \text{mM}). In each pane, the asterisk indicates the ‘nominal’ parameter set (no drug, pacing rate of 1Hz). The dotted lines indicate contours at which each safety marker increases or decreases 10% from its nominal value. The colors of the dotted lines, asterisks, and text labels were chosen solely to enhance readability.
Figure 7 Experimental assays at different stages of drug discovery and development. (a) At each stage, the new information is added to previous knowledge and used to make incremental decisions whether to continue compound development. (b) Computer models of in vitro assays and machine learning algorithms are used to reverse engineer the effects of candidate compounds. The reverse-engineered drug effects are used in forward simulation models to provide an integrated assessment of patient risk.