Math 440H - Advanced Applied Numerical Methods

Spring 2004

Lou Kondic, Cullimore 622; phone: (973) 596-2996; email: kondic@oak.njit.edu Office Hours: Tues, Thur, 4:00pm-6:00pm and by appointment

Basic Text: K. W. Morton and D. F. Mayers, "Numerical Solution for Partial Differential Equations", Cambridge (1994)

Add

ditional Texts: Selected research articles	
Week 1:	Overview of computing software and general methods of scientific computing; Methods for solving large systems of linear equations;
Week 2:	Overview of linear ODE's; Finite Difference Methods;
Week 3:	Spectral methods for Linear ODE's; Elliptic problems; Derichlet and Neumann problems boundary conditions;
Week 4:	Boundary Integral Methods for Elliptic problems;
Week 5:	Nonlinear elliptic problems; Applications to problems in electrostatic and ideal fluid flow;
Week 6:	Diffusion equation in one space dimension;
Week 7:	Efficiency, stability, convergence, and consistency of different schemes used for diffusion problems; Error analysis;
Week 8:	Spectral methods for diffusion equation; Diffusion equation in higher dimensions: explicit and ADI type of schemes;
Week 9:	Introduction to linear hyperbolic equations; Method of characteristics;

- Week 10: Lax-Wendroff and leap-frog schemes;
 - Inviscid Burgers equation;
- Week 11: Shocks solutions to Burgers equation; Systems of hyperbolic equations;
- Week 12: Conservation Laws;
- Week 13: Applications of hyperbolic equations to gas dynamics;
- Week 14: Student presentations; Review