Math 222 EXAM III, April 13, 2005

Read each problem carefully. Show all your work for each problem! No Calculators!

1. (10) An object weighing 4 lb (mass $m=\frac{1}{8} \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$) stretches a spring $\frac{1}{2} \mathrm{ft}$. Determine the natural frequency and the period when the spring is set in motion.
2. (12) Find the Laplace Transform of the function $f(t)=t\left[1-u_{1}(t)\right]$ using the definition of the Laplace Transform.
3. (8) Use the convolution theorem to find the inverse Laplace Transform of the function below. Do not evaluate the integral.

$$
F(s)=\frac{1}{s^{3}\left(s^{2}+4\right)}
$$

4. (12) Consider the function $g(t)=t+\alpha u_{1}(t)-t u_{3}(t)$.
(a) (4) Determine the value of the constant α for which $g(2)=1$.
(b) (8) Carefully sketch $g(t)$ on the interval $t \in[0,5]$ using the value of α from part (a).
5. (12) Find the inverse Laplace Transform of the given functions.

$$
\text { (a) } F(s)=\frac{1-e^{-s}}{s} ; \quad \text { (b) } H(s)=\frac{s+6}{s^{2}+6 s+10}
$$

6. (20) An object weighing 64 lb (mass $m=2 \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$) stretches a spring 8 ft . The undamped system, initially at rest, is suddenly set in motion by an external force of $12 \sin (\omega t) \mathrm{lb}$.
(a) (5) Write the governing equation and initial conditions for this system.
(b) (5) For what value of ω will the system exhibit resonance?
(c) (10) Use the Laplace transform to solve the IVP with $\omega=1$ (do not use the convolution theorem).
7. (8) Find the inverse Laplace Transform of the function

$$
F(s)=\frac{e^{-2 s}}{(2 s+1)^{2}+4}
$$

8. (18) Consider the initial value problem

$$
y^{\prime \prime}+y=\gamma \delta(t-\pi / 4), \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

(a) (12) Find the solution of the given initial value problem.
(b) (6) Determine the value of γ such that all motion ceases (i.e. $y=0$) for $t \geq \pi / 4$. (Useful fact: $\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b))$

