Math 222 Final Exam, May 11, 2005

1. (a) (4) Is the equation $y^{\prime \prime}+e y^{\prime}=(1+y)$ linear or nonlinear? What is its order?
(b) (4) Given $g(t)=\alpha+u_{2}(t)-3 \alpha u_{3}(t)$, find α such that $g(1)=2$.
(c) (4) Is the function $f(x)=\left(e^{x}+e^{-x}\right) \sin (x)$ even, odd or neither? Why?
2. (12) Solve the following IVP's:
(a) $y^{\prime}+2 y=e^{-2 t}, \quad y(0)=1 ;$
(b) $y^{\prime \prime}-4 y^{\prime}+20 y=0, \quad y(0)=0, \quad y^{\prime}(0)=8$.
3. (12) Solve the following differential equations:

$$
\text { (a) } 2 y^{\prime}-y=\frac{1}{y}, \quad \text { (b) } y^{\prime}+\frac{y}{x}=1+y \text {. }
$$

4. (a) (8) Solve the IVP:

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right) \mathbf{X}, \quad \mathbf{X}(0)=\binom{2}{1}
$$

(b) (6) Use the Laplace Transform to solve the following IVP:

$$
y^{\prime \prime}=2, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

5. (14) For each of the following, determine the complementary solution and a particular solution. In (b), you must use the Method of Undetermined Coefficients.

$$
\text { (a) } y^{\prime \prime}-2 y^{\prime}+y=e^{t} / t, \quad \text { (b) } \quad 2 y^{\prime \prime}-7 y^{\prime}+3 y=e^{t} \text {. }
$$

6. (12) For the following IVP, (a) Solve using Laplace Transforms, (b) evaluate $y(\pi)$, and (c) evaluate $\lim _{t \rightarrow \infty} y$.

$$
y^{\prime \prime}+y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 ; \quad \text { where } g(t)=\left\{\begin{array}{cc}
1, & 0 \leq t<2 \pi \\
0, & 2 \pi \leq t
\end{array}\right.
$$

7. (12) One solution to the following equation is $y_{1}=x$. Find a second linearly independent solution. Compute the Wronskian of your two solutions.

$$
x^{3} y^{\prime \prime}+x y^{\prime}-y=0 .
$$

8. (a) (4) Carefully sketch the even periodic extension, of period π, of $f(x)=\sin x, \quad 0<x<\pi / 2$. Sketch over the interval $x \in[-2 \pi, 2 \pi]$.
(b) (8) Find the Fourier Sine series of $f(x)=1, \quad 0<x<1$, with period 2.
