Math 222 FINAL EXAM, December 17, 2004

Read each problem carefully. Show all your work for each problem! No Calculators!

1. (16) Solve the Initial Value Problems (IVP's):

$$
\text { (a) } t y^{\prime}+y=e^{t}, \quad y(1)=0 ; \quad \text { (b) } e^{x} y^{\prime}-e^{y}=0, \quad y(0)=0
$$

2. (16) Solve the IVP in (a) and Boundary Value Problem in (b):
(a) $2 y^{\prime \prime}-y^{\prime}-y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 ;$
(b) $y^{\prime \prime}=1, \quad y^{\prime}(0)=0, \quad y^{\prime}(1)=1$.
3. (a) (8) Use Undetermined Coefficients to find a particular solution

$$
y^{\prime \prime}+y^{\prime}-2 y=6 e^{t} .
$$

(b) (8) Solve using the Laplace Transform:

$$
y^{\prime \prime}-y^{\prime}=\delta(t-1), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

4. (a) (6) Find the Laplace Transform using the definition of the Laplace Transform.

$$
f(t)=u_{1}(t) e^{t} .
$$

(b) (6) Find the inverse Laplace Transform

$$
F(s)=\frac{e^{-4 s}}{4 s+1}
$$

(c) (8) Find the Fourier Series for the function:

$$
f(x)=\left\{\begin{array}{cc}
1 & -2 \leq x<0 \\
0 & 0 \leq x<2
\end{array} \quad \text { and } f(x+4)=f(x)\right.
$$

5. (a) (8) Find the general solution in terms of real-valued functions:

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right) \mathbf{X}
$$

(b) (8) Find the eigenvalues and eigenfunctions:

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(\pi)=0 .
$$

6. (a) (4) Is the function $f(x)=x e^{x}-x e^{-x}$ even, odd, or neither? Why?
(b) (6) Given $g(t)=t u_{1}(t)-u_{3}(t)(t-3)$, determine

$$
\text { (i) } g(2), \quad \text { and } \quad \text { (ii) } \lim _{t \rightarrow \infty} g(t) .
$$

(c) (6) Carefully sketch the odd periodic extension of the given function over the interval $[-2 \pi, 2 \pi]$.

$$
f(x)=\cos x, \quad 0<x<\frac{\pi}{2}
$$

