Math 222 EXAM III, November 17, 2004

Read each problem carefully. Show all your work for each problem! No Calculators!

1. (15) A mass weighing 8 lb stretches a spring 2 ft . If the mass is compressed upward 2 ft from its equilibrium position, and given and initial downward velocity of $8 \mathrm{ft} / \mathrm{s}$ (with no damping) find the position of the mass at any time. Determine the frequency, period, amplitude and phase of the motion. ($\mathrm{g}=32 \mathrm{ft} / \mathrm{s}^{2}$)
2. (15) Given the matrices \mathbf{A} and \mathbf{B} below, compute the following:
(a) $\mathbf{A}+\mathbf{B}$,
(b) $\mathbf{A B}$,
(c) $\mathbf{B A}$.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
3 & 2 & 3 \\
0 & -1 & 3
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 1 & 3 \\
1 & -1 & -1
\end{array}\right)
$$

3. (15) Find the Laplace Transform of the given functions using the definition of the Laplace Transform.

$$
\text { (a) } f(t)=e^{2 t} ; \quad \text { (b) } f(t)=\left\{\begin{array}{cc}
t, & 0 \leq t<1 \\
2, & 1 \leq t
\end{array}\right.
$$

4. (15) Find the inverse Laplace Transform of the given functions.

$$
\text { (a) } F(s)=\frac{1}{4+s} ; \quad \text { (b) } \quad G(s)=\frac{s+9}{s^{2}+9} ; \quad \text { (c) } H(s)=\frac{3}{e^{3 s}(s-1)} \text {. }
$$

5. (20) Solve the Initial Value Problems (IVP's) using the Laplace Transform:
(a) $4 y^{\prime \prime}+4 y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=-2 ;$
(b) $y^{\prime \prime}=-\delta(t-2), \quad y(0)=0, \quad y^{\prime}(0)=1$.
6. (20) Consider the initial value problem

$$
y^{\prime \prime}+y=g(t)+\gamma \delta(t-4 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0 ; \quad g(t)=\left\{\begin{array}{cc}
t, & 0 \leq t<\pi \\
2 \pi-t, & \pi \leq t<2 \pi \\
0, & 2 \pi \leq t
\end{array}\right.
$$

(a) (5) Carefully sketch a graph of the forcing function, $g(t)$.
(b) (10) Find the solution of the given initial value problem.
(c) (5) Determine the value of γ such that all motion ceases (i.e. $y=0$) for $t \geq 4 \pi$. (Useful fact: $\sin (t-\pi)=-\sin (t))$

