Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (15 points) Differentiate:
(a) $f(x)=e^{2 x} \sin 3 x$,
(b) $g(y)=\frac{\ln \left(y^{2}\right)}{y}$,
(c) $h(z)=\log _{x}(2 x)$.
2. (15 points) Integrate:
(a) $\int x \cdot 3^{x^{2}} d x$,
(b) $\int \frac{\log _{4} x}{x} d x$,
(c) $\int \frac{e^{2 x}}{3+e^{2 x}} d x$.
3. (15 points) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{\tan 5 x}$,
(b) $\lim _{x \rightarrow \infty}\left(x^{2}+2 x+3\right) e^{-x}$,
(c) $\lim _{x \rightarrow 0} \frac{1-\cos x}{\ln \left(1-x^{2}\right)}$.
4. (15 points) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$,
(b) $\lim _{z \rightarrow \infty}\left(1+\frac{1}{2 z}\right)^{z}$,
(c) $\lim _{t \rightarrow \infty} \frac{\ln t}{t^{0.01}}$.
5. (14 points) Find the length of a curve

$$
y=\frac{x^{2}}{2}-\frac{\ln x}{4}, \quad 2 \leq x \leq 4 .
$$

6. (12 points) Find the area of the surface of revolution obtained by revolving the curve

$$
y=\left(x-\frac{4}{9}\right)^{3 / 2}, \quad 1 \leq x \leq 4
$$

around the y-axis.
7. (14 points) How much work is needed to fill a spherical tank of radius 20 ft with its center 30 ft above the ground, with water $\left(\rho=63 \mathrm{lb} / \mathrm{ft}^{3}\right)$ from the ground level?

