Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (10 points) Compute:
(a) $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{2 \theta^{2}}$,
(b) $\lim _{x \rightarrow \infty} x^{2} e^{-2 x}$,
(c) $\lim _{x \rightarrow 0^{+}}(1+2 x)^{1 / x}$.
2. (10 points) Integrate:
(a) $\int_{0}^{2} \frac{d x}{\sqrt{16-x^{2}}}$,
(b) $\int x \cos 2 x d x$,
(c) $\int \sin ^{3} x d x$
3. (12 points) Integrate (evaluate the improper integrals correctly):
(a) $\int \frac{d x}{x^{2}-3 x-4}$,
(b) $\int \frac{2 x+1}{x^{2}+4} d x$,
(c) $\int_{1}^{\infty} \frac{d x}{x^{2}}$.
4. (12 points) Find the area of the region in polar coordinates lying outside the curve $r=1$ and inside $r=2 \cos \theta$.
5. (10 points) Find the first two non-zero terms in the Maclaurin Series of the function $f(x)=$ $\arctan x$.
6. (10 points) Determine whether the following series converge or diverge. Find the sum of those that converge. Justify your answer!
(a) $\sum_{n=1}^{\infty} n$,
(b) $\sum_{n=0}^{\infty} \frac{2^{n}-3^{n}}{4^{n}}$,
(c) $\sum_{n=0}^{\infty} \frac{1}{x^{n}}$.
7. (12 points) Determine whether the following positive term series converge or diverge. State clearly which test you use.
(a) $\sum_{n=0}^{\infty} \frac{n}{n^{4}+1}$,
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
(c) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
8. (12 points) Determine whether the following series converge absolutely, converge conditionally, or diverge. Justify your answer!
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$,
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}}$,
(c) $\sum_{n=0}^{\infty} e^{-n} \sin n$.
9. (12 points) For the power series below, find (i) the radius of convergence, and (ii) the interval of convergence (including both endpoints).

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n} x^{n}}{n}
$$

