Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (20 points) Differentiate:
(a) $f(x)=x^{3}+1$,
(b) $g(t)=t^{2}(2+t)$,
(c) $h(z)=\frac{z^{2}}{3-z}$,
(d) $u(x)=\sqrt{x+\sqrt{x}}$.
2. (20 points) Compute the following limits (whether finite or infinite):
(a) $\lim _{x \rightarrow-2^{-}} \frac{x^{2}}{2+x}$,
(b) $\lim _{t \rightarrow 2} \frac{2 t-4}{t^{2}+3 t-10}$,
(c) $\lim _{\theta \rightarrow 0} \frac{2 \theta^{2}}{\cos 2 \theta-1}$,
(d) $\lim _{x \rightarrow 0^{-}} \frac{3 x}{|x|}$.
3. (10 points) The length of the side of a square decreases at a rate of 3 cm / s. What is the rate of change of its area, when the area is equal to $16 \mathrm{~cm}^{2}$?
4. (20 points) Find the equations of the tangent line and the normal line to the curve

$$
y=\frac{x-1}{x-2}
$$

at the point $(3,2)$. Draw a detailed sketch showing the curve and these two lines.
5. (15 points) Use the definition of the derivative to find $f^{\prime}(x)$, if

$$
f(x)=\frac{2}{x+1} .
$$

Compare your answer with that obtained using the rules of differentiation.
6. (15 points) For each function below, determine for which values of x these functions are continuous, and if not, whether the discontinuity is removable or not, and explain why:
(a) $f(x)=x^{2}+2 x+3$,
(b) $g(x)=\frac{1-\sqrt{x}}{1-x}$,
(c) $h(x)=\frac{x}{\sin x}$.

