Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (9 points) Differentiate the following functions:
(a) $f(x)=(2 x+3)(1-x)$,
(b) $g(y)=\frac{y}{\left(1+y^{2}\right)^{1 / 2}}$,
(c) $h(\theta)=\tan (2 \theta)+5 \cos \left(\theta^{2}\right)$.
2. (9 points) Compute the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{2+3 x-x^{2}}{1+2 x+3 x^{2}}$,
(b) $\lim _{t \rightarrow 1} \frac{t-1}{2-\sqrt{5-t}}$,
(c) $\lim _{z \rightarrow 0} \frac{\sin 3 z}{2 z}$.
3. (8 points) Use the definition of derivative to calculate $f^{\prime}(x)$, if $f(x)=\frac{1}{1+3 x}$.
4. (8 points) Write down the linear approximation $L(x)$ for the function $f(x)=\sqrt{3+x}$ near the point $a=1$. Use this linear approximation $L(x)$ to estimate $\sqrt{5}$.
5. (8 points) Show that the function $f(x)=\frac{1}{x}$ satisfies the assumptions of the Mean Value Theorem on the interval $[2,3]$. Find all numbers c in this interval that satisfy the conclusions of that Theorem.
6. (15 points) For the function

$$
f(x)=\frac{x}{x^{2}+4},
$$

find the following, if they exist: (i) all local extrema, (ii) intervals where the function increases or decreases, (iii) all points of inflection, (iv) intervals of upward or downward concavity, (v) all asymptotes. Also, sketch a plot of the curve $y=f(x)$.
7. (8 points) Find the area of the region in the plane bounded by the curves $y=-x^{2}$ and $y=x^{2}-2 x-4$.
8. (9 points) Integrate:

$$
\text { (a) } \int\left(x^{3 / 2}-\frac{2}{x^{1 / 2}}\right) d x, \quad \text { (b) } \int 3 t \cos \left(t^{2}\right) d t, \quad \text { (c) } \int_{0}^{\pi / 4} \tan x \sec ^{2} x d x
$$

9. (9 points) Find two positive numbers x and y, such that $3 x+4 y=5$, for which the expression $x^{2}+y^{2}$ is as small as possible.
10. (9 points) Find the volume of the solid generated by rotating the plane region bounded by the curves $y=2 x^{2}, y=3 x^{2}, y=1, y=4$, around the y-axis.
11. (8 points) Let x_{i}^{*} denote a selected point in the i-th subinterval $\left[x_{i-1}, x_{i}\right]$ of the partition of the interval $[-1,2]$ into n subintervals each of length Δx. Calculate the following limit by identifying the expression below with a Riemann sum of the appropriate integral and calculating that integral:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i}^{*}\left(3 x_{i}^{*}+2\right) \Delta x
$$

