Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (16 points) Differentiate:
(a) $f(t)=t^{2} \cos \left(t^{3}\right)$,
(b) $g(y)=\cos (3 \tan (2 y))$,
(c) $h(z)=\frac{\sin z}{z}$,
(d) $u(x)=\frac{1}{(5-2 \sqrt{1+x})^{1 / 3}}$.
2. (12 points) Use linear approximation of the function $f(x)=\sqrt{x}$ around $x=100$ to approximate the value of $\sqrt{121}$. How does it compare with the exact value?
3. (15 points) Find the absolute minimum and the absolute maximum of the following functions, if they exist
(a) $f(x)=-x+1, \quad[-4,-1]$,
(b) $g(x)=\frac{x}{x^{2}+2}, \quad[-1,2]$,
(c) $h(x)=2-|x|, \quad[-3,1]$.
4. (14 points) Use implicit differentiation to find the equation of the tangent line to the curve $y^{2}-2 x-4 y-1=0$, passing through the point $(-2,1)$. Verify that this point lies on the curve.
5. (14 points) A blimp is hovering 80 meters above the ground. A car is moving with speed $20 \mathrm{~m} / \mathrm{sec}$ away from the point directly under the blimp. At what rate is the distance between the blimp and the car increasing when the car is 60 m away from the point directly under the blimp?
6. (16 points) What is the price of the cheapest cylindrical can that can be made of copper sheet costing 2 cents $/ \mathrm{cm}^{2}$, if it is to hold $54 \pi(\approx 170) \mathrm{cm}^{3}$ of contents? Hint: minimize the total surface area of the can of the given volume.
7. (13 points) Use Newton's method to find successive approximations to the root of the function $f(x)=x^{-1}-2$ and compare it with the exact value of the root.
(a) Use $x_{0}=\frac{1}{2}$ as the initial guess and perform two iterations of the Newton's method. Do the iterations converge? To the exact root?
(b) Now use $x_{0}=0$ as the initial guess and perform two iterations of the Newton's method. Do the iterations converge? To the exact root?
(c) Repeat with $x_{0}=-1$ as the initial guess and perform three iterations of the Newton's method. Do the iterations converge?
