Read each problem carefully. Please show all your work for each problem! Use only those methods discussed thus far in class. No calculators!

1. (16 points) Differentiate:

(a)
$$f(t) = t^2 \cos(t^3)$$
, (b) $g(y) = \cos(3\tan(2y))$,
(c) $h(z) = \frac{\sin z}{z}$, (d) $u(x) = \frac{1}{(5 - 2\sqrt{1 + x})^{1/3}}$.

- 2. (12 points) Use linear approximation of the function $f(x) = \sqrt{x}$ around x = 100 to approximate the value of $\sqrt{121}$. How does it compare with the exact value?
- 3. (15 points) Find the absolute minimum and the absolute maximum of the following functions, if they exist

(a)
$$f(x) = -x + 1$$
, $[-4, -1]$, (b) $g(x) = \frac{x}{x^2 + 2}$, $[-1, 2]$,
(c) $h(x) = 2 - |x|$, $[-3, 1]$.

- 4. (14 points) Use implicit differentiation to find the equation of the tangent line to the curve $y^2 2x 4y 1 = 0$, passing through the point (-2, 1). Verify that this point lies on the curve.
- 5. (14 points) A blimp is hovering 80 meters above the ground. A car is moving with speed 20 m/sec away from the point directly under the blimp. At what rate is the distance between the blimp and the car increasing when the car is 60 m away from the point directly under the blimp?
- 6. (16 points) What is the price of the cheapest cylindrical can that can be made of copper sheet costing 2 cents/cm², if it is to hold 54π (≈ 170) cm³ of contents? *Hint:* minimize the total surface area of the can of the given volume.
- 7. (13 points) Use Newton's method to find successive approximations to the root of the function $f(x) = x^{-1} 2$ and compare it with the exact value of the root.
 - (a) Use $x_0 = \frac{1}{2}$ as the initial guess and perform two iterations of the Newton's method. Do the iterations converge? To the exact root?
 - (b) Now use $x_0 = 0$ as the initial guess and perform two iterations of the Newton's method. Do the iterations converge? To the exact root?
 - (c) Repeat with $x_0 = -1$ as the initial guess and perform three iterations of the Newton's method. Do the iterations converge?